Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
???displayArticle.abstract???
Wnt and Nodal signaling pathways are required for initial patterning of cell fates along anterior-posterior (AP) and dorsal-ventral (DV) axes, respectively, of sea urchin embryos during cleavage and early blastula stages. These mechanisms are connected because expression of nodal depends on early Wnt/β-catenin signaling. Here, we show that an important subsequent function of Wnt signaling is to control the shape of the nodal expression domain and maintain correct specification of different cell types along the axes of the embryo. In the absence of Wnt1, the posterior-ventral region of the embryo is severely altered during early gastrulation. Strikingly, at this time, nodal and its downstream target genes gsc and bra are expressed ectopically, extending posteriorly to the blastopore. They override the initial specification of posterior-ventral ectoderm and endoderm fates, eliminating the ventral contribution to the gut and displacing the ciliary band dorsally towards, and occasionally beyond, the blastopore. Consequently, in Wnt1 morphants, the blastopore is located at the border of the re-specified posterior-ventral oral ectoderm and by larval stages it is in the same plane near the stomodeum on the ventral side. In normal embryos, a Nodal-dependent process downregulates wnt1 expression in dorsal posterior cells during early gastrulation, focusing Wnt1 signaling to the posterior-ventral region where it suppresses nodal expression. These subsequent interactions between Wnt and Nodal signaling are thus mutually antagonistic, each limiting the range of the other''s activity, in order to maintain and stabilize the body plan initially established by those same signaling pathways in the early embryo.
Agnello,
Cadmium induces an apoptotic response in sea urchin embryos.
2007, Pubmed,
Echinobase
Agnello,
Cadmium induces an apoptotic response in sea urchin embryos.
2007,
Pubmed
,
Echinobase
Angerer,
Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.
2003,
Pubmed
,
Echinobase
Angerer,
Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes.
2001,
Pubmed
,
Echinobase
Angerer,
The evolution of nervous system patterning: insights from sea urchin development.
2011,
Pubmed
,
Echinobase
Bergeron,
Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
2011,
Pubmed
,
Echinobase
Bolouri,
The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example.
2010,
Pubmed
,
Echinobase
Bradham,
Chordin is required for neural but not axial development in sea urchin embryos.
2009,
Pubmed
,
Echinobase
Cameron,
The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm.
1993,
Pubmed
,
Echinobase
Croce,
Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.
2006,
Pubmed
,
Echinobase
Croce,
Wnt6 activates endoderm in the sea urchin gene regulatory network.
2011,
Pubmed
,
Echinobase
Davidson,
Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms.
1998,
Pubmed
,
Echinobase
De Robertis,
Evo-devo: variations on ancestral themes.
2008,
Pubmed
Duboc,
Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
2004,
Pubmed
,
Echinobase
Duboc,
Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
2008,
Pubmed
,
Echinobase
Duboc,
Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
2010,
Pubmed
,
Echinobase
Ertl,
Nodal-mediated epigenesis requires dynamin-mediated endocytosis.
2011,
Pubmed
,
Echinobase
Ettensohn,
Patterning the early sea urchin embryo.
2000,
Pubmed
,
Echinobase
Ettensohn,
Cell lineage conversion in the sea urchin embryo.
1988,
Pubmed
,
Echinobase
Ettensohn,
The regulation of primary mesenchyme cell patterning.
1990,
Pubmed
,
Echinobase
Ferkowicz,
Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode.
2001,
Pubmed
,
Echinobase
Flowers,
Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
2004,
Pubmed
,
Echinobase
Gross,
The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
2001,
Pubmed
,
Echinobase
Kenny,
SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres.
1999,
Pubmed
,
Echinobase
Lapraz,
Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
2009,
Pubmed
,
Echinobase
Logan,
Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
1999,
Pubmed
,
Echinobase
Lynn,
Localization of a family of MRNAS in a single cell type and its precursors in sea urchin embryos.
1983,
Pubmed
,
Echinobase
Minokawa,
Expression patterns of four different regulatory genes that function during sea urchin development.
2004,
Pubmed
,
Echinobase
Nakajima,
Divergent patterns of neural development in larval echinoids and asteroids.
2004,
Pubmed
,
Echinobase
Niehrs,
On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes.
2010,
Pubmed
Nocente-McGrath,
Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation.
1989,
Pubmed
,
Echinobase
Otim,
SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis.
2004,
Pubmed
,
Echinobase
Peter,
A gene regulatory network controlling the embryonic specification of endoderm.
2011,
Pubmed
,
Echinobase
Peter,
The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
2010,
Pubmed
,
Echinobase
Poustka,
A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks.
2007,
Pubmed
,
Echinobase
Ransick,
Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos.
1993,
Pubmed
,
Echinobase
Saudemont,
Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.
2010,
Pubmed
,
Echinobase
Sethi,
Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos.
2012,
Pubmed
,
Echinobase
Sherwood,
LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.
1999,
Pubmed
,
Echinobase
Tsutsui,
Semi-rational engineering of a coral fluorescent protein into an efficient highlighter.
2005,
Pubmed
Vega Thurber,
Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus.
2007,
Pubmed
,
Echinobase
Voronina,
Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.
2008,
Pubmed
,
Echinobase
Wei,
Direct development of neurons within foregut endoderm of sea urchin embryos.
2011,
Pubmed
,
Echinobase
Wei,
The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
2009,
Pubmed
,
Echinobase
Wessel,
Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA.
1989,
Pubmed
,
Echinobase
Wikramanayake,
Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
1995,
Pubmed
,
Echinobase
Wikramanayake,
Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
2004,
Pubmed
,
Echinobase
Wikramanayake,
beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
1998,
Pubmed
,
Echinobase
Yaguchi,
TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo.
2010,
Pubmed
,
Echinobase
Yaguchi,
Initial analysis of immunochemical cell surface properties, location and formation of the serotonergic apical ganglion in sea urchin embryos.
2000,
Pubmed
,
Echinobase
Yaguchi,
Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
2006,
Pubmed
,
Echinobase
Yaguchi,
A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
2008,
Pubmed
,
Echinobase