Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-41640
Proc Natl Acad Sci U S A 2010 Jun 01;10722:10103-8. doi: 10.1073/pnas.1004824107.
Show Gene links Show Anatomy links

Information processing at the foxa node of the sea urchin endomesoderm specification network.



???displayArticle.abstract???
The foxa regulatory gene is of central importance for endoderm specification across Bilateria, and this gene lies at an essential node of the well-characterized sea urchin endomesoderm gene regulatory network (GRN). Here we experimentally dissect the cis-regulatory system that controls the complex pattern of foxa expression in these embryos. Four separate cis-regulatory modules (CRMs) cooperate to control foxa expression in different spatial domains of the endomesoderm, and at different times. A detailed mutational analysis revealed the inputs to each of these cis-regulatory modules. The complex and dynamic expression of foxa is regulated by a combination of repressors, a permissive switch, and multiple activators. A mathematical kinetic model was applied to study the dynamic response of foxa cis-regulatory modules to transient inputs. This study shed light on the mesoderm-endoderm fate decision and provides a functional explanation, in terms of the genomic regulatory code, for the spatial and temporal expression of a key developmental control gene.

???displayArticle.pubmedLink??? 20479235
???displayArticle.pmcLink??? PMC2890477
???displayArticle.link??? Proc Natl Acad Sci U S A
???displayArticle.grants??? [+]

Genes referenced: foxa1 LOC100887844 LOC575170

References [+] :
Arenas-Mena, Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. 2006, Pubmed, Echinobase