Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49654
Dev Comp Immunol 2021 Jan 01;114:103835. doi: 10.1016/j.dci.2020.103835.
Show Gene links Show Anatomy links

Identification and functional characterization of natural resistance-associated macrophage protein 2 from sea cucumber Apostichopus japonicus.

Huang B , Lv Z , Li Y , Li C .


???displayArticle.abstract???
As a member of natural resistance-associated macrophage protein (Nramp) family, Nramp2 conservatively exists in the cell membrane across species and is essential for normal iron homeostasis in an H+-dependent manner. Withholding available iron represents an important host defense strategy. However, the function of Nramp2 in response to invading pathogens is largely unknown in invertebrates. In this study, a unique echinoderm Nramp2 was identified from sea cucumber Apostichopus japonicus (designated as AjNramp2). The cDNA sequence of AjNramp2 was 2360 bp, with a putative open reading frame of 1713 bp, encoding a typical Nramp domain containing protein with 570 amino acid residues. Structural analysis revealed that AjNramp2 consisted of highly conserved helix regions similar with the human Nramp2. Spatial expression analysis revealed that AjNramp2 was ubiquitously expressed in all examined tissues, with the highest level found in the intestine. Immunohistochemistry assay showed that AjNramp2 was mainly located in the cellular membrane in coelomocytes. Vibrio splendidus challenge and lipopolysaccharide (LPS) stimulation could significantly promote the expression of AjNramp2, which was consistent with the cellular iron level in coelomocytes. Moreover, when the expression of AjNramp2 was knocked down by siRNA-AjNramp2, the cellular iron level was coordinately decreased in coelomocytes under LPS stimulation. Taken together, results indicated that AjNramp2 serves as an iron transport receptor to withhold available iron and may contribute to the nutritional immunity defense system of sea cucumber.

???displayArticle.pubmedLink??? 32841622
???displayArticle.link??? Dev Comp Immunol