Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48805
Dev Comp Immunol 2020 Mar 01;104:103541. doi: 10.1016/j.dci.2019.103541.
Show Gene links Show Anatomy links

Cloning and functional analysis the first NLRC4-like gene from the sea cucumber Apostichopus japonicus.

Chen K , Lv Z , Shao Y , Guo M , Li C .


???displayArticle.abstract???
The NOD-like receptor family member 4 (NLRC4) plays a crucial role in regulating the innate immune responses and cell apoptosis pathways in vertebrates. However, the function of the NLRC4 counterpart in invertebrates remains elusive. In this study, the first NLRC4-like gene was cloned and characterized from Apostichopus japonicus (designated as AjNLRC4-like) with RACE technology. The full-length cDNA of the AjNLRC4-like gene was 4065 bp, which consisted of a 5''-untranslated region (UTR) of 387 bp, a 3''-UTR of 159 bp, and a complete open reading frame of 3519 bp encoding a polypeptide of 1172 amino acid residues. Structural analysis revealed that AjNLRC4-like protein contained two IG domains (31-132 and 251-353 amino acids), a common NACHT (600-757 amino acids), and no LRR and CARD domains compared with the vertebrate NLRC4. Spatial expression analysis revealed that the AjNLRC4-like was ubiquitously expressed in all the examined tissues with larger magnitude in the intestine. The mRNA expression of the AjNLRC4-like was significantly upregulated by 2.86- and 2.92-fold at 24 h after the Vibrio splendidus challenge in vivo and the lipopolysaccharide (LPS) treatment in vitro, respectively, compared with that of the control group. The purified recombinant AjNLRC4-NACHT protein displayed higher binding activities to various pathogen-associated molecular patterns (PAMPs), including LPS, peptidoglycan, and mannan. Further functional analysis indicated that the apoptosis of coelomocytes was significantly inhibited by 11.37% after specific AjNLRC4-like siRNA treatment, and the inflammatory caspase Ajcaspase-1 was synchronously decreased by 0.28-fold in the same condition. Collectively, these results supported that the uncanonical AjNLRC4-like protein may share similar functions to the vertebrate NLRC4 as the pattern recognition receptor and in mediating coelomocyte apoptosis in the pathogen-challenged sea cucumber.

???displayArticle.pubmedLink??? 31733219
???displayArticle.link??? Dev Comp Immunol


Genes referenced: LOC100887844 LOC100890978 LOC105445068 LOC115919910 tbc1d4