Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48585
Eur J Med Chem 2020 Mar 15;190:112111. doi: 10.1016/j.ejmech.2020.112111.
Show Gene links Show Anatomy links

Design, synthesis and biological evaluation of novel 2-(5-aryl-1H-imidazol-1-yl) derivatives as potential inhibitors of the HIV-1 Vpu and host BST-2 protein interaction.

Rashamuse TJ , Njengele Z , Coyanis EM , Sayed Y , Mosebi S , Bode ML .


???displayArticle.abstract???
Novel ethyl 2-(5-aryl-1H-imidazol-1-yl)-acetates 17 and propionates 18, together with their acetic acid 19 and acetohydrazide 20 derivatives, were designed and synthesized using TosMIC chemistry. Biological evaluation of these newly synthesized scaffolds in the HIV-1 Vpu- Host BST-2 ELISA assay identified seven hits (17a, 17b, 17c, 17g, 18a, 20f and 20g) with greater than 50% inhibitory activity. These hits were validated in the HIV-1 Vpu- Host BST-2 AlphaScreen™ and six of the seven compounds were found to have comparable percentage inhibitory activities to those of the ELISA assay. Compounds 17b and 20g, with consistent percentage inhibitory activities across the two assays, had IC50 values of 11.6 ± 1.1 μM and 17.6 ± 0.9 μM in a dose response AlphaScreen™ assay. In a cell-based HIV-1 antiviral assay, compound 17b exhibited an EC50 = 6.3 ± 0.7 μM at non-toxic concentrations (CC50 = 184.5 ± 0.8 μM), whereas compound 20g displayed antiviral activity roughly equivalent to its toxicity (CC50 = 159.5 ± 0.9 μM). This data suggests that compound 17b, active in both cell-based and biochemical assays, provides a good starting point for the design of possible lead compounds for prevention of HIV-1 Vpu and host BST-2 protein binding in new anti-HIV therapeutics.

???displayArticle.pubmedLink??? 32058240
???displayArticle.link??? Eur J Med Chem


Genes referenced: LOC115919910