Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48316
Plant Cell Physiol 2019 Jan 01;601:176-187. doi: 10.1093/pcp/pcy202.
Show Gene links Show Anatomy links

High-Affinity K+ Transporters from a Halophyte, Sporobolus virginicus, Mediate Both K+ and Na+ Transport in Transgenic Arabidopsis, X. laevis Oocytes and Yeast.

Tada Y , Endo C , Katsuhara M , Horie T , Shibasaka M , Nakahara Y , Kurusu T .


???displayArticle.abstract???
Class II high-affinity potassium transporters (HKTs) have been proposed to mediate Na+-K+ co-transport in plants, as well as Na+ and K+ homeostasis under K+-starved and saline environments. We identified class II HKTs, namely SvHKT2;1 and SvHKT2;2 (SvHKTs), from the halophytic turf grass, Sporobolus virginicus. SvHKT2;2 expression in S. virginicus was up-regulated by NaCl treatment, while SvHKT2;1 expression was assumed to be up-regulated by K+ starvation and down-regulated by NaCl treatment. Localization analysis revealed SvHKTs predominantly targeted the plasma membrane. SvHKTs complemented K+ uptake deficiency in mutant yeast, and showed both inward and outward K+ and Na+ transport activity in Xenopus laevis oocytes. When constitutively expressed in Arabidopsis, SvHKTs mediated K+ and Na+ accumulation in shoots under K+-starved conditions, and the K+ concentration in xylem saps of transformants was also higher than in those of wild-type plants. These results suggest transporter-enhanced K+ and Na+ uploading to the xylem from xylem parenchyma cells. Together, our data demonstrate that SvHKTs mediate both outward and inward K+ and Na+ transport in X. laevis oocytes, and possibly in plant and yeast cells, depending on the ionic conditions.

???displayArticle.pubmedLink??? 30325438
???displayArticle.link??? Plant Cell Physiol