Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-47318
Hypertens Res 2019 Nov 01;4211:1683-1691. doi: 10.1038/s41440-019-0301-z.
Show Gene links Show Anatomy links

Melatonin attenuates renal sympathetic overactivity and reactive oxygen species in the brain in neurogenic hypertension.

Nishi EE , Almeida VR , Amaral FG , Simon KA , Futuro-Neto HA , Pontes RB , Cespedes JG , Campos RR , Bergamaschi CT .


???displayArticle.abstract???
Sympathetic overactivation contributes to the pathogenesis of both experimental and human hypertension. We have previously reported that oxidative stress in sympathetic premotor neurons leads to arterial baroreflex dysfunction and increased sympathetic drive to the kidneys in an experimental model of neurogenic hypertension. In this study, we hypothesized that melatonin, a potent antioxidant, may be protective in the brainstem regions involved in the tonic and reflex control of blood pressure (BP) in renovascular hypertensive rats. Neurogenic hypertension was induced by placing a silver clip (gap of 0.2 mm) around the left renal artery, and after 5 weeks of renal clip placement, the rats were treated orally with melatonin (30 mg/kg/day) by gavage for 15 days. At the end of melatonin treatment, we evaluated baseline mean arterial pressure (MAP), renal sympathetic nerve activity (rSNA), and the baroreflex control of heart rate (HR) and rSNA. Reactive oxygen species (ROS) were detected within the brainstem regions by dihydroethidium staining. Melatonin treatment effectively reduced baseline MAP and sympathoexcitation to the ischemic kidney in renovascular hypertensive rats. The baroreflex control of HR and rSNA were improved after melatonin treatment in the hypertensive group. Moreover, there was a preferential decrease in ROS within the rostral ventrolateral medulla (RVLM) and the nucleus of the solitary tract (NTS). Therefore, our study indicates that melatonin is effective in reducing renal sympathetic overactivity associated with decreased ROS in brainstem regions that regulate BP in an experimental model of neurogenic hypertension.

???displayArticle.pubmedLink??? 31316170
???displayArticle.link??? Hypertens Res


Genes referenced: ros1

References [+] :
Allegra, The chemistry of melatonin's interaction with reactive species. 2003, Pubmed