Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46839
J Exp Biol 2019 Feb 21;222Pt 4:. doi: 10.1242/jeb.187351.
Show Gene links Show Anatomy links

Brief exposure to intense turbulence induces a sustained life-history shift in echinoids.

Ferner MC , Hodin J , Ng G , Gaylord B .


???displayArticle.abstract???
In coastal ecosystems, attributes of fluid motion can prompt animal larvae to rise or sink in the water column and to select microhabitats within which they attach and commit to a benthic existence. In echinoid (sea urchin and sand dollar) larvae living along wave-exposed shorelines, intense turbulence characteristic of surf zones can cause individuals to undergo an abrupt life-history shift characterized by precocious entry into competence - the stage at which larvae will settle and complete metamorphosis in response to local cues. However, the mechanistic details of this turbulence-triggered onset of competence remain poorly defined. Here, we evaluate in a series of laboratory experiments the time course of this turbulence effect, both the rapidity with which it initiates and whether it perdures. We found that larvae become competent with turbulence exposures as brief as 30 s, with longer exposures inducing a greater proportion of larvae to become competent. Intriguingly, larvae can remember such exposures for a protracted period (at least 24 h), a pattern reminiscent of long-term potentiation. Turbulence also induces short-term behavioral responses that last less than 30 min, including cessation of swimming, that facilitate sinking and thus contact of echinoid larvae with the substratum. Together, these results yield a novel perspective on how larvae find their way to suitable adult habitat at the critical settlement transition, and also open new experimental opportunities to elucidate the mechanisms by which planktonic animals respond to fluid motion.

???displayArticle.pubmedLink??? 30573667
???displayArticle.link??? J Exp Biol


Genes referenced: LOC100887844