Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Comp Biochem Physiol Part D Genomics Proteomics January 1, 2017; 22 1-9.

Understanding regulation of microRNAs on intestine regeneration in the sea cucumber Apostichopus japonicus using high-throughput sequencing.

Sun L , Sun J , Li X , Zhang L , Yang H , Wang Q .

The sea cucumber, as a member of the Echinodermata, has the capacity to restore damaged organs and body parts, which has always been a key scientific issue. MicroRNAs (miRNAs), a class of short noncoding RNAs, play important roles in regulating gene expression. In the present study, we applied high-throughput sequencing to investigate alterations of miRNA expression in regenerative intestine compared to normal intestine. A total of 73 differentially expressed miRNAs were obtained, including 59 up-regulated miRNAs and 14 down-regulated miRNAs. Among these molecules, Aja-miR-1715-5p, Aja-miR-153, Aja-miR-252a, Aja-miR-153-5p, Aja-miR-252b, Aja-miR-2001, Aja-miR-64d-3p, and Aja-miR-252-5p were differentially expressed over 10-fold at 3days post-evisceration (dpe). Notably, real-time PCR revealed that Aja-miR-1715-5p was up-regulated 1390-fold at 3dpe. Moreover, putative target gene co-expression analyses, gene ontology, and pathway analyses suggest that these miRNAs play important roles in specific cellular events (cell proliferation, migration, and apoptosis), metabolic regulation, and energy redistribution. These results will provide a basis for future studies of miRNA regulation in sea cucumber regeneration.

PubMed ID: 28160609
Article link: Comp Biochem Physiol Part D Genomics Proteomics

Genes referenced: LOC115923239 LOC574837