Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-43462
Cell Mol Life Sci 2014 Sep 01;7118:3553-67. doi: 10.1007/s00018-014-1644-x.
Show Gene links Show Anatomy links

Wnt-Notch signalling crosstalk in development and disease.

Collu GM , Hidalgo-Sastre A , Brennan K .


???displayArticle.abstract???
The Notch and Wnt pathways are two of only a handful of highly conserved signalling pathways that control cell-fate decisions during animal development (Pires-daSilva and Sommer in Nat Rev Genet 4: 39-49, 2003). These two pathways are required together to regulate many aspects of metazoan development, ranging from germ layer patterning in sea urchins (Peter and Davidson in Nature 474: 635-639, 2011) to the formation and patterning of the fly wing (Axelrod et al in Science 271:1826-1832, 1996; Micchelli et al in Development 124:1485-1495, 1997; Rulifson et al in Nature 384:72-74, 1996), the spacing of the ciliated cells in the epidermis of frog embryos (Collu et al in Development 139:4405-4415, 2012) and the maintenance and turnover of the skin, gut lining and mammary gland in mammals (Clayton et al in Nature 446:185-189, 2007; Clevers in Cell 154:274-284, 2013; Doupe et al in Dev Cell 18:317-323, 2010; Lim et al in Science 342:1226-1230, 2013; Lowell et al in Curr Biol 10:491-500, 2000; van et al in Nature 435:959-963, 2005; Yin et al in Nat Methods 11:106-112, 2013). In addition, many diseases, including several cancers, are caused by aberrant signalling through the two pathways (Bolós et al in Endocr Rev 28: 339-363, 2007; Clevers in Cell 127: 469-480, 2006). In this review, we will outline the two signalling pathways, describe the different points of interaction between them, and cover how these interactions influence development and disease.

???displayArticle.pubmedLink??? 24942883
???displayArticle.link??? Cell Mol Life Sci


Genes referenced: LOC100887844 LOC115919910

References [+] :
Aberle, beta-catenin is a target for the ubiquitin-proteasome pathway. 1997, Pubmed