Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-51183
Mar Drugs 2022 Oct 31;2011:. doi: 10.3390/md20110686.
Show Gene links Show Anatomy links

Molecular and Functional Characterization of a Novel Kunitz-Type Toxin-like Peptide in the Giant Triton Snail Charonia tritonis.

Zhang G , Jia H , Luo L , Zhang Y , Cen X , Yao G , Zhang H , He M , Liu W .


???displayArticle.abstract???
It has been reported that the giant triton snail (Charonia tritonis) inserts its large proboscis and then injects venom or acid saliva from its salivary gland into its prey, the crown-of-thorns starfish Acanthaster planci (COTS), paralyzing it. A full-length cDNA sequence of the C. tritonis Ct-kunitzin gene was obtained by RACE PCR based on a transcriptomic database constructed by our laboratory (data not published), which contains an open reading frame (ORF) sequence with a length of 384 bp including a 1-32aa Kunitz domain. The Ct-kunitzin peptide was synthesized by solid-phase polypeptide methods according to its conserved amino acid sequence, with a molecular weight of 3746.0 as well as two disulfide bonds. Renatured Ct-kunitzin was injected into mice ventricles to evaluate its potential function. Compared with the normal control group (physiological saline), the spontaneous locomotor activity of the Ct-kunitzin group decreased significantly. There was a significant effect on Ct-kunitzin on mice grip strength in the grip strength test. In addition, Ct-kunitzin exhibited remarkable biological activity in suppressing pain in the pain thresholds test. There were no significant differences between the Ct-kunitzin group and the normal control group in terms of various hematological indexes and histopathological observations. When tested in COTS, the most significant histological change was the destruction, disorganization, and significant reduction in the amount of COTS tube feet tissues. Altogether, the potential paralyzing effect on mice suggests that Ct-kunitzin is a possible agent for novel drug development.

???displayArticle.pubmedLink??? 36355009
???displayArticle.link??? Mar Drugs
???displayArticle.grants??? [+]


References [+] :
Aasen, Sub-lethal dosing of azaspiracid-1 in female NMRI mice. 2010, Pubmed