Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50925
ACS Appl Mater Interfaces 2022 Sep 14;1436:41246-41256. doi: 10.1021/acsami.2c13064.
Show Gene links Show Anatomy links

Autogenous and Tunable CNTs for Enhanced Polarization and Conduction Loss Enabling Sea Urchin-Like Co3ZnC/Co/C Composites with Excellent Microwave Absorption Performance.

Ren Q , Feng T , Song Z , Zhou P , Wang M , Zhang Q , Wang L .


???displayArticle.abstract???
ZIF-67-derived magnetic metal/carbon composites are considered prospective candidates for use as microwave absorption (MA) materials owing to their magnetoelectric synergy. However, the structure of ZIF-67-derived MA materials mainly depends on the morphology and composition of pristine metal-organic frameworks (MOFs), and their microstructures lack a rational design. Herein, a multidimensional sea urchin-like carbon nanotubes (CNTs)-grafted carbon polyhedra-encapsulated Co3ZnC/Co nanoparticle composite was prepared by one-step catalytic pyrolysis of ZIF-67/ZnO using a rational structural design. The autogenous and tunable CNTs obtained with the assistance of zinc evaporation not only overcome the limitation of homogeneous dispersion but also endow the Co3ZnC/Co/C composite with outstanding MA properties owing to the conduction loss provided by CNTs, polarization loss caused by multiple components, and electromagnetic wave trap composed of a special sea urchin-like structure. Consequently, the minimum reflection loss of ZZ0.1-600 reaches -60.3 dB at 1.6 mm, the maximum absorption bandwidth of ZZ0.05-600 is 6.24 GHz (covering nearly the entire Ku band) at 1.9 mm, and the structure has a low weight ratio (30 wt %). Compared with Z-600 and pure ZnO, the MA performance of the sea urchin-like Co3ZnC/Co/C composite obtained by rational structural design has been greatly improved; this strategy offers a new approach for optimizing the MA performance of materials according to their structural design.

???displayArticle.pubmedLink??? 36045505
???displayArticle.link??? ACS Appl Mater Interfaces