Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50517
J Sci Food Agric August 30, 2022; 102 (11): 4542-4550.
Show Gene links Show Anatomy links

Characterization of a synthetic zinc-chelating peptide from sea cucumber (Stichopus japonicus) and its gastrointestinal digestion and absorption in vitro.

Wang Z , Sun J , Ma X , Liu X , Yin F , Li D , Nakamura Y , Yu C , Zhou D .


Abstract
BACKGROUND: Zinc absorption in intestinal system could be strongly affected by the gastrointestinal digestion and absorption of zinc-chelating peptides serving as zinc carriers. In this study, a novel zinc-chelating sea cucumber synthetic peptide (SCSP) was synthesized to estimate its gastrointestinal digestion and promotive effect of zinc absorption in vitro. RESULTS: Analysis of isothermal titration calorimetry suggested that the binding of SCSP and zinc (N ≈ 1) was exothermic, with relatively weak binding affinity (K = 1.0 × 10-3  mol L-1 ). The formation of SCSP-Zn complexes brought morphological changes to the peptides confirmed by scanning electron microscopy (SEM), which also indicated 6.88% of the existence of zinc element. In addition, the SCSP-Zn complexes remained stable under simulated human gastrointestinal digestion. In an in vitro study, the SCSP-Zn complex could successfully transport through the intestinal membrane in the model of everted rat gut sacs (nearly 7.5 μM cm-2 ) as well as Caco-2 cells where the zinc transport reached 0.0014 mg mL-1 carried by SCSP. Fluorescence staining experiments revealed free zinc accumulation inside the tissues and cells treated with the SCSP-Zn complex. CONCLUSIONS: The chelation SCSP-Zn had the promotion ability of zinc absorption in vitro and ex vivo experiments, which suggested a theoretical basis for the design and production of effective zinc chelating peptides as zinc carriers to improve zinc bioavailability. © 2022 Society of Chemical Industry.

PubMed ID: 35137406
Article link: J Sci Food Agric
Grant support: [+]