Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50448
Biol Bull 2022 Feb 01;2421:1-15. doi: 10.1086/717157.
Show Gene links Show Anatomy links

Scope for Developmental Plasticity of Feeding Larvae of a Holothuroid, Contrasted with Other Echinoderm Larvae.

Strathmann RR .


???displayArticle.abstract???
AbstractFeeding larvae of echinoderms appear to differ in scope for adaptive developmental plasticity in response to food. Extension of the ciliary band on narrow arms supported by skeletal rods, as in echinoid and ophiuroid larvae, may enable a greater increase in maximum clearance rate per cell added, conferring greater advantages from developing longer ciliary bands when food is scarce. Formation of the juvenile mouth and water vascular system at a new site, as in echinoid and asteroid larvae, permits extensive growth of the juvenile rudiment during larval feeding, with advantages from earlier or more growth of the rudiment when food is abundant. In contrast, plasticity in storage of nutrients is unrelated to the form of the ciliary band or the site of formation of the juvenile's mouth. Feeding larvae (auriculariae) of holothuroids lack arms supported by skeletal rods and formation of the mouth at a new site but as a unique feature store nutrients in hyaline spheres. In this study, more food for auriculariae of Apostichopus californicus resulted in juveniles (pentactulae) with longer and wider bodies and larger hyaline spheres, but effects of food supply on the size of most body parts of auriculariae were small. Auriculariae with more food developed relatively larger stomachs and larger posterior hyaline spheres, indications of greater nutrient storage. Auriculariae with less food developed relatively wider mouths and differed in some exterior dimensions, which might enhance the capture of food. Plasticity is limited in rudiment development and perhaps in structures for feeding, but plasticity in nutrient storage can provide advantageous compromises between duration of growth as a feeding larva and the condition of juveniles formed at metamorphosis.

???displayArticle.pubmedLink??? 35245160
???displayArticle.link??? Biol Bull