Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50375
Carbohydr Polym 2022 Jul 01;287:119362. doi: 10.1016/j.carbpol.2022.119362.
Show Gene links Show Anatomy links

Immunological effect of fucosylated chondroitin sulfate and its oligomers from Holothuria fuscogilva on RAW 264.7 cells.

Gong PX , Wu YC , Chen X , Zhou ZL , Chen X , Lv SZ , You Y , Li HJ .


???displayArticle.abstract???
Fucosylated chondroitin sulfate was obtained from the sea cucumber Holothuria fuscogilva (FCShf). The structure was elucidated by NMR and HILIC-FTMS analysis. FCShf contained a chondroitin core chain [→3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1→]n, where the sulfation positions were the O-4 or O-6 of the GalNAc residues. The ratio of sulfated and non-sulfated GalNAc at O-6 was 1:2, while the ratio of GalNAc at O-4 was 1:1. 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S) were attached to the O-3 of GlcA with a molar ratio of 1.00: 0.62: 1.32. The FCShf could significantly promote the proliferative rate, NO production and neutral red uptake of RAW 264.7 cells within the concentration range of 10-300 μg/mL. Compared with the fucosylation and deacetylation degrees, the molecular weight of FCShf had markedly influence on the activation of RAW 264.7 cells. A decrease in molecular weight dramatically improved the immunoregulatory activities. Furthermore, FCShf activated RAW 264.7 cells through TLR-2/4-NF-κB pathway.

???displayArticle.pubmedLink??? 35422306
???displayArticle.link??? Carbohydr Polym