Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50317
Mar Environ Res 2022 Jun 01;178:105647. doi: 10.1016/j.marenvres.2022.105647.
Show Gene links Show Anatomy links

Exploring coexistence mechanisms in a three-species assemblage.

Sanmartí N , Ontoria Y , Ricart AM , Arthur R , Alcoverro T , Pérez M , Romero J .


???displayArticle.abstract???
Interactions among species are essential in shaping ecological communities, although it is not always clear under what conditions they can persist when the number of species involved is higher than two. Here we describe a three-species assemblage involving the seagrass Cymodocea nodosa, the pen shell Pinna nobilis and the herbivore sea urchin Paracentrotus lividus, and we explore the mechanisms allowing its persistence through field observations and manipulative experiments. The abundance of pen shells was higher in seagrass beds than in bare sand, suggesting a recruitment facilitation. The presence of sea urchins, almost exclusively attached or around pen shells, indicated habitat facilitation for sea urchins, which overgrazed the meadow around the pen shells forming seagrass-free halos. Our results suggest that this system persists thanks to: (i) the behavioral reluctance of sea urchins to move far from pen shells, making their impact on seagrass strictly local, (ii) the sparse distribution of pen shells and (iii) the plant's resistance mechanisms to herbivory. Unpacking these mechanisms allows a better understanding of how ecological communities are assembled.

???displayArticle.pubmedLink??? 35605380
???displayArticle.link??? Mar Environ Res