Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Comp Biochem Physiol Part D Genomics Proteomics 2020 Sep 01;35:100686. doi: 10.1016/j.cbd.2020.100686.
Show Gene links Show Anatomy links

Identification of molecular markers for superior quantitative traits in a novel sea cucumber strain by comparative microRNA-mRNA expression profiling.

Chen Y , Li Y , Zhan Y , Hu W , Sun J , Zhang W , Song J , Li D , Chang Y .

To investigate the adaptability of Apostichopus japonicus (A. japonicus) strain "Anyuan No. 1" in the South China Sea, field monitoring and microRNA-mRNA integrated analyses were conducted between "Anyuan No. 1" and a regular A. japonicus population from Wendeng (Shandong Province, as a control) in the Xiapu farming area in Fujian Province, China. The results showed that "Anyuan No. 1" exhibited greater body weight increase and a higher number of papillae compared to the control during two and a half months of field monitoring. Comparative microRNA (miRNA) and mRNA transcriptome analyses identified 12 differentially expressed miRNAs (DEMs) and 165 differentially expressed genes (DEGs) in "Anyuan No. 1" compared to the control. Long-chain specific acyl-CoA dehydrogenase (ACADL), transmembrane protein 251 (TMEM251), dehydrogenase/reductase SDR family protein 7-like (Dhrs7), insulin-like growth factor-binding protein 7 (IGFBP-7), CDK5 regulatory subunit-associated protein 1 (CDK5RAP1), visual pigment-like receptor peropsin, 39S ribosomal protein, miR-10, miR-153, miR-7, and miR-3529 were identified as gene and miRNA candidates correlated with superior economic traits in "Anyuan No. 1". Collectively, "Anyuan No. 1" is suitable for large-scale cultivation extension due to its better adaptability to the South China Sea area. Furthermore, we identified "miR10-ACADL" as a potential module for further molecular marker-assisted selective breeding of A. japonicus.

PubMed ID: 32413829
Article link: Comp Biochem Physiol Part D Genomics Proteomics