Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49482
Comp Biochem Physiol B Biochem Mol Biol 2021 Jan 01;252:110536. doi: 10.1016/j.cbpb.2020.110536.
Show Gene links Show Anatomy links

Identification and functional characterization of piwi1 gene in sea cucumber, Apostichopus japonicas.

Sun ZH , Wei JL , Cui ZP , Han YL , Zhang J , Song J , Chang YQ .


???displayArticle.abstract???
The sea cucumber (Apostichopus japonicus) is an economically important mariculture species in Asia. However, the genetic breeding of sea cucumbers is difficult because the sexes cannot be identified by appearance. Therefore, studies on sex-related genes are helpful in revealing the mechanisms of sex determination and differentiation in sea cucumbers. P-element induced wimpy testis (piwi) is a germ cell marker involved in gametogenesis in vertebrates; however, the expression pattern and function during gametogenesis remain unclear in sea cucumbers. In this study, we identified a piwi homolog gene in A. japonicus (Ajpiwi1) and investigated its expression pattern, and function. Ajpiwi1 is a maternal factor and is ubiquitously expressed in adult tissues, including the ovary and testis. Ajpiwi1 expression is strong in early oocytes, spermatocytes, and spermatogonia; weak in mature oocytes; and undetected in spermatids and intra-gonadal somatic cells. The knockdown of Ajpiwi1 by RNA interference (RNAi) led to the downregulation of other conserved sex-related genes such as dmrt1, foxl2, and germ cell-less. Therefore, Ajpiwi1 might play a critical role during gametogenesis in A. japonicus. This study creates new possibilities for studying sex-related gene functions in the sea cucumber and builds a gene function research platform based on RNAi for the first time.

???displayArticle.pubmedLink??? 33212209
???displayArticle.link??? Comp Biochem Physiol B Biochem Mol Biol