Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49410
Ecotoxicol Environ Saf 2021 Feb 01;209:111794. doi: 10.1016/j.ecoenv.2020.111794.
Show Gene links Show Anatomy links

Effect of chronic exposure to microplastic fibre ingestion in the sea cucumber Apostichopus japonicus.

Mohsen M , Zhang L , Sun L , Lin C , Wang Q , Liu S , Sun J , Yang H .


???displayArticle.abstract???
Microplastics (MPs) in the form of microfibres (MFs) are of great concern because of their size and increasing abundance, which increase their potential to interact with or be ingested by aquatic organisms. Although MFs are the dominant shape of MPs ingested by sea cucumbers in habitats, their effect on sea cucumbers remains unclear. This study examined the effect of dietary exposure to MFs on the growth and physiological status of both juvenile and adult Apostichopus japonicus sea cucumbers. MFs were mixed into the diet of sea cucumbers for 60 d at environmentally relevant concentrations of 0.6 MFs g-1, 1.2 MFs g-1 and 10 MFs g-1. Dietary exposure to MFs, with concentrations at or above those commonly found in the habitats, did not significantly affect the growth and faecal production rate of either juvenile or adult sea cucumbers. However, a disruption in immunity indices (acid phosphatase and alkaline phosphatase activity) and oxidative stress indices (total antioxidant capacity and malondialdehyde content) was observed in juvenile and adult sea cucumbers, indicating that these indices might be useful as potential biomarkers of the exposure to MF ingestion in sea cucumbers. This study provides insights into the toxicity mechanism of MF ingestion in a commercially and ecologically important species.

???displayArticle.pubmedLink??? 33348256
???displayArticle.link??? Ecotoxicol Environ Saf