Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Biomolecules 2021 Mar 14;113:. doi: 10.3390/biom11030427.
Show Gene links Show Anatomy links

New Triterpene Glycosides from the Far Eastern Starfish Solaster pacificus and Their Biological Activity.

Malyarenko TV , Kicha AA , Kalinovsky AI , Dmitrenok PS , Malyarenko OS , Kuzmich AS , Stonik VA , Ivanchina NV .

Three new triterpene glycosides, pacificusosides A-C (1-3), and three previously known triterpene glycosides, cucumariosides C1 (4), C2 (5), and A10 (6), were isolated from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The structures of 1-3 were elucidated by extensive NMR and ESIMS techniques and chemical transformations. Compound 1 has a novel, unique structure, containing an aldehyde group of side chains in its triterpene aglycon. This structural fragment has not previously been found in the sea cucumber triterpene glycosides or starfish steroidal glycosides. Probably, pacificusoside A (1) is a product of the metabolism of the glycoside obtained through dietary means from a sea cucumber in the starfish. Another two new triterpene glycosides (2, 3) have closely related characteristics to sea cucumber glycosides. The cytotoxicity of compounds 1-6 was tested against human embryonic kidney HEK 293 cells, colorectal carcinoma HT-29 cells, melanoma RPMI-7951 cells, and breast cancer MDA-MB-231 cells using MTS assay. Compounds 4-6 revealed the highest cytotoxic activity against the tested cell lines, while the other investigated compounds had moderate or slight cytotoxicity. The cytotoxic effects of 2-6 were reduced by cholesterol like the similar effects of the previously investigated individual triterpene glycosides. Compounds 3, 4, and 5 almost completely suppressed the colony formation of the HT-29, RPMI-7951, and MDA-MB-231 cells at a nontoxic concentration of 0.5 µM.

PubMed ID: 33799442
PMC ID: PMC8001898
Article link: Biomolecules
Grant support: [+]

Article Images: [+] show captions