Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49143
Mar Environ Res 2021 Jul 01;169:105372. doi: 10.1016/j.marenvres.2021.105372.
Show Gene links Show Anatomy links

When site matters: Metabolic and behavioural responses of adult sea urchins from different environments during long-term exposure to seawater acidification.

Asnicar D , Novoa-Abelleira A , Minichino R , Badocco D , Pastore P , Finos L , Munari M , Marin MG .


???displayArticle.abstract???
CO2-driven ocean acidification (OA) affects many aspects of sea urchin biology. However, even in the same species, OA effects are often not univocal due to non-uniform exposure setups or different ecological history of the experimental specimens. In the present work, two groups of adult sea urchins Paracentrotus lividus from different environments (the Lagoon of Venice and a coastal area in the Northern Adriatic Sea) were exposed to OA in a long-term exposure. Animals were maintained for six months in both natural seawater (pHT 8.04) and end-of-the-century predicted condition (-0.4 units pH). Monthly, physiological (respiration rate, ammonia excretion, O:N ratio) and behavioural (righting, sheltering) endpoints were investigated. Both pH and time of exposure significantly influenced sea urchin responses, but differences between sites were highlighted, particularly in the first months. Under reduced pH, ammonia excretion increased and O:N decreased in coastal specimens. Righting and sheltering were impaired in coastal animals, whereas only righting decreased in lagoon ones. These findings suggested a higher adaptation ability in sea urchins from a more variable environment. Interestingly, as the exposure continued, animals from both sites were able to acclimate. Results revealed plasticity in the physiological and behavioural responses of sea urchins under future predicted OA conditions.

???displayArticle.pubmedLink??? 34058626
???displayArticle.link??? Mar Environ Res