Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48971
J Sci Food Agric 2022 Mar 30;1025:1987-1994. doi: 10.1002/jsfa.11537.
Show Gene links Show Anatomy links

Oral supplementation of sea cucumber and its hydrolysate mitigates ultraviolet A-induced photoaging in hairless mice.

Liu S , Lu Y , Kurono M , Matahira Y , Manabe Y , Sugawara T .


???displayArticle.abstract???
BACKGROUND: Chronic exposure to ultraviolet (UV) radiation promotes skin photoaging, which is clinically characterized by dryness, laxity, and wrinkling. Sea cucumber (Stichopus japonicus) (SC) is a marine organism with culinary and medicinal applications, especially in Asian countries. It is also a potential nutraceutical as it exhibits bioactive effects, such as antioxidant, antitumor, and anticancer activity. This study examined the effects of SC and its hydrolysate (SCH) on ultraviolet A (UVA) induced skin barrier function and wrinkle formation using hairless mice. RESULTS: Ultraviolet A significantly induced transepidermal water loss and wrinkle formation, which were significantly mitigated upon oral administration of SC and SCH. Sea cucumber also mitigated the UVA-induced downregulation of epidermal natural moisturizing factors and the upregulation of Aqp3, Mmp13, Tnfa, and Il6 mRNA levels in the mouse skin. CONCLUSION: Taken together, these results suggest that dietary SC and SCH exert anti-photoaging effects by modulating filaggrin synthesis and desquamation in the epidermis and regulating the NF-κB pathway in the skin. Our research indicates that SC and SCH have potential applications in nutricosmetics for photoaging. © 2021 Society of Chemical Industry.

???displayArticle.pubmedLink??? 34516661
???displayArticle.link??? J Sci Food Agric