Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48531
Environ Pollut 2020 Jul 01;262:114216. doi: 10.1016/j.envpol.2020.114216.
Show Gene links Show Anatomy links

Hydroponic growth test of maize sprouts to evaluate As, Cd, Cr and Pb translocation from mineral fertilizer and As and Cr speciation.

Fioroto AM , Albuquerque LGR , Carvalho AAC , Oliveira AP , Rodrigues F , Oliveira PV .


???displayArticle.abstract???
The present study proposes a maize sprouts hydroponic growth model to evaluate the As, Cd, Cr and Pb translocation from multinutrient fertilizer and to do speciation of As and Cr in this fertilizer and As in parts of plant in order to predict their phytoavailability. X-ray absorption near edge structure (XANES) was employed to speciate As and Cr directly on fertilizer solid sample. Arsenate (AsV) and a solid solution of FeCrO3 were the major species identified in the samples. The sprouts were hydroponically cultivated in water, fertilizer slurry and fertilizer extract media. Concentrations of As, Cd and Pb measured on leaves of maize sprouts ranged from 0.061 to 0.31 mg kg-1, whereas Cr was not translocated to the aerial parts of sprouts. High performance liquid chromatographic with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) analysis was used to determine As speciation in maize sprouts, as well as in the fertilizer extracts and slurries. Arsenate was the only species identified in the initial fertilizer extract and this information is in agreement with the XANES results. However, the reduction of arsenate to arsenite was observed in extracts and slurries collected after sprout growth, probably due to the action of exudates secreted by plant roots. Arsenite was the predominant species identified in sprouts, the high phosphate concentration in the medium may have contributed to reduce arsenate phytoavailability.

???displayArticle.pubmedLink??? 32155546
???displayArticle.link??? Environ Pollut