Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48500
Sci Total Environ 2020 Jun 25;723:138003. doi: 10.1016/j.scitotenv.2020.138003.
Show Gene links Show Anatomy links

Responses of sea urchin larvae to field and laboratory acidification.

Foo SA , Koweek DA , Munari M , Gambi MC , Byrne M , Caldeira K .


???displayArticle.abstract???
Understanding the extent to which laboratory findings of low pH on marine organisms can be extrapolated to the natural environment is key toward making better projections about the impacts of global change on marine ecosystems. We simultaneously exposed larvae of the sea urchin Arbacia lixula to ocean acidification in laboratory and natural CO2 vents and assessed the arm growth response as a proxy of net calcification. Populations of embryos were simultaneously placed at both control and volcanic CO2 vent sites in Ischia (Italy), with a parallel group maintained in the laboratory in control and low pH treatments corresponding to the mean pH levels of the field sites. As expected, larvae grown at constant low pH (pHT 7.8) in the laboratory exhibited reduced arm growth, but counter to expectations, the larvae that developed at the low pH vent site (pHT 7.33-7.99) had the longest arms. The larvae at the control field site (pHT 7.87-7.99) grew at a similar rate to laboratory controls. Salinity, temperature, oxygen and flow regimes were comparable between control and vent sites; however, chlorophyll a levels and particulate organic carbon were higher at the vent site than at the control field site. This increased food availability may have modulated the effects of low pH, creating an opposite calcification response in the laboratory from that in the field. Divergent responses of the same larval populations developing in laboratory and field environments show the importance of considering larval phenotypic plasticity and the complex interactions among decreased pH, food availability and larval responses.

???displayArticle.pubmedLink??? 32217382
???displayArticle.link??? Sci Total Environ


Genes referenced: LOC100887844 LOC115923516