Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48102
Evol Dev 2002 Jan 01;42:111-23. doi: 10.1046/j.1525-142x.2002.01066.x.
Show Gene links Show Anatomy links

Gene expression and larval evolution: changing roles of distal-less and orthodenticle in echinoderm larvae.

Lowe CJ , Issel-Tarver L , Wray GA .


???displayArticle.abstract???
We describe the expression of the homeobox genes orthodenticle (Otx) and distal-less (Dlx) during the larval development of seven species representing three classes of echinoderms: Holothuroidea, Asteroidea, and Echinoidea. Several expression domains are conserved between species within a single class, including Dlx expression within the brachiolar arms of asteroid larvae and Otx expression within the ciliated bands of holothuroid larvae. Some expression domains are apparently conserved between classes, such as the expression of Dlx within the hydrocoel (left mesocoel) in all three classes. However, several substantial differences in expression domains among taxa were also evident for both genes. Some autapomorphic (unique derived) features of gene expression are phylogenetically associated with autapomorphic structures, such as Dlx expression within the invaginating rudiment of euechinoids. Other autapomorphic gene expression domains are associated with evolutionary shifts in life history from feeding to nonfeeding larval development, such as Otx expression within the ciliated bands of a nonfeeding holothuroid larva. Similar associations between evolutionary changes in morphology and life history mode with changes in regulatory gene expression have also been observed in arthropods, urochordates, and chordates. We predict that recruitment of regulatory genes to a new developmental role is commonly associated with evolutionary changes in morphology and may be particularly common in clades with complex life cycles and diversity of life history modes. Caution should be used when making generalizations about gene expression and function based on a single species, which may not accurately reflect developmental processes and life histories of the phyla to which it belongs.

???displayArticle.pubmedLink??? 12004959
???displayArticle.link??? Evol Dev


Genes referenced: dlxl otx2