Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-47261
Food Funct 2019 Jul 17;107:3955-3964. doi: 10.1039/c9fo01147a.
Show Gene links Show Anatomy links

Synergistic effect of sea cucumber saponins and EPA-enriched phospholipids on insulin resistance in high-fat diet-induced obese mice.

Han XQ , Zhang LY , Ding L , Shi HH , Xue CH , Zhang TT , Wang YM .


???displayArticle.abstract???
Sea cucumber saponins (SCS) exhibit a significant effect on ameliorating glucose and lipid disorders by inhibiting fatty acid biosynthesis; however, high cytotoxicity and hemolytic activity limit their application. Eicosapentaenoic acid-enriched phospholipids (EPA-PL) significantly ameliorate insulin resistance and elevate the level of hepatic lipolysis, which may have a synergistic effect with SCS in alleviating obesity-related insulin resistance via multiple mechanisms. In the present study, high-fat diet-induced male C57BL/6J mice with obesity-related insulin resistance were used to evaluate the synergistic effect of SCS and EPA-PL on alleviating the insulin resistance. Results show that the combination of SCS and EPA-PL at a half dose exhibited a significant improvement on glucose intolerance and systematic insulin sensitivity than SCS or EPA-PL alone. Moreover, the half dose-combination remarkably inhibited the macrophage infiltration (F4/80) to white adipose tissue (WAT) and significantly down-regulated the level of MCP1, TNF-α and IL-6 compared with SCS and EPA-PL alone. Consequently, the combined administration not only decreased hepatic gluconeogenesis and increased hepatic glycogen synthesis (P < 0.05), but also stimulated the glucose uptake in WAT and muscle (P < 0.05). Nevertheless, neither SCS or EPA-PL alone exhibited any effect on the glucose uptake. The combination of SCS and EPA-PL contributed to a synergistic effect on alleviating the obesity-related insulin resistance due to the amelioration of an inflammation-centric peripheral insulin response.

???displayArticle.pubmedLink??? 31199413
???displayArticle.link??? Food Funct


Genes referenced: fat4 LOC100887844