Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46891
Mar Pollut Bull 2019 Jan 01;138:407-420. doi: 10.1016/j.marpolbul.2018.11.063.
Show Gene links Show Anatomy links

Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: Heat and hypoxia.

Huo D , Sun L , Zhang L , Ru X , Liu S , Yang H .


???displayArticle.abstract???
Economically important marine organisms face severe environmental challenges, such as high temperature and low dissolved oxygen, from global climate change. Adverse environmental factors impact the survival and growth of economically important marine organisms, thereby negatively influencing the aquaculture industry. However, little is known about the responses of sea cucumbers to combined environmental co-stressors till now. In this study, ultra-performance liquid chromatography (UPLC) was utilized to obtain metabolic profiles of sea cucumbers. Changes in the concentrations of 84, 68, and 417 metabolites related to the responses of sea cucumbers to heat (26 °C), hypoxia (2 mg/L) and the combined stress, respectively, were observed and analyzed. Representative biomarkers were discussed in detail, including deltaline, fusarin C, halichondrin B and rapanone. The concentration of metabolites involved in the regulation of energy metabolism, including amino acid, carbohydrate and lipid metabolism were significantly changed, and the tricarboxylic acid (TCA)-cycle was significantly altered under heat plus hypoxia. We interpreted these changes partly as an adaptation mechanism in response to environmental stress. Based on the decreased accumulation of glutamine, we hypothesized that heat stress is the main factor that interferes with the process of glutamic acid-glutamine metabolism. The present study showed that combined environmental stressors have a more extensive impact on the metabolites of the respiratory tree in sea cucumbers than single stress. These results would facilitate further development of the sea cucumber as an echinoderm model to study mechanisms of response to adverse environments, as well as to help advance knowledge of the adaptation of marine organisms to global climate change.

???displayArticle.pubmedLink??? 30660290
???displayArticle.link??? Mar Pollut Bull


Genes referenced: impact LOC100887844