Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46099
PLoS One 2018 Jan 01;131:e0192023. doi: 10.1371/journal.pone.0192023.
Show Gene links Show Anatomy links

Spatiotemporal patterns of the macrofaunal community structure in the East China Sea, off the coast of Zhejiang, China, and the impact of the Kuroshio Branch Current.

Xu Y , Yu F , Li X , Ma L , Dong D , Kou Q , Sui J , Gan Z , Gong L , Yang M , Wang Y , Sun Y , Wang J , Wang H .


???displayArticle.abstract???
The Kuroshio Current intrudes in the bottom layer of the East China Sea continental shelf from the northeast of Taiwan via two bottom branches named the Nearshore Kuroshio Branch Current (NKBC, along the 60 m isobath) and the Offshore Kuroshio Branch Current (OKBC, along the 100 m isobath). However, knowledge on the macrofaunal responses to these bottom branches is limited. This study examined the variations in the benthic macrofaunal community in a section of the East China Sea under the influence of the NKBC. Seven sites corresponding to three regions (the west, middle and east region) were sampled using an Agassiz trawl net at a monthly rate from February to November 2015 (except in August). A total of 270 macrofaunal species were collected in this study. Cluster analysis and nMDS ordination revealed three communities: the inshore, Kuroshio and offshore communities, roughly corresponding to the west, middle and east of NKBC route. Significant differences in the species composition (one-way PERMANOVA) and diversity indices (one-way ANOVA) among the regions and communities were observed, while no statistically significant difference among the months was detected. The indicator species also varied among the communities, with Sternaspis scutata and Odontamblyopus rubicundus dominating the inshore community, Camatopsis rubida, Schizaster lacunosus and Craspidaster hesperus dominating the Kuroshio community, and Portunus argentatus, Champsodon snyderi and Coelorinchus multispinulosus dominating the offshore community. Some rare species (e.g., Neobythites sivicola) may indicate the passage of the NKBC better than the indicator species. A redundancy analysis was used to describe the relationship between the macrofaunal species and environmental variables in this study. Water depth and turbidity played important roles in the distribution of the macrofauna. S. scutata and O. rubicundus were associated with high turbidity and shallow depth, while Plesionika izumiae and P. argentatus were associated with low turbidity and deep depth. This study outlines the impact of the NKBC on the distribution patterns of the macrofaunal community of the East China Sea. More studies are needed to understand the detailed interactions between macrofauna and the NKBC in the future.

???displayArticle.pubmedLink??? 29385207
???displayArticle.pmcLink??? PMC5792002
???displayArticle.link??? PLoS One


Genes referenced: impact LOC100887844 LOC100893907 LOC115923516


???attribute.lit??? ???displayArticles.show???
References [+] :
Shuai, Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River. 2016, Pubmed