Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-45444
Brief Funct Genomics 2017 Sep 01;165:288-298. doi: 10.1093/bfgp/elx005.
Show Gene links Show Anatomy links

The evolution of neuropeptide signalling: insights from echinoderms.

Semmens DC , Elphick MR .


???displayArticle.abstract???
Neuropeptides are evolutionarily ancient mediators of neuronal signalling that regulate a wide range of physiological processes and behaviours in animals. Neuropeptide signalling has been investigated extensively in vertebrates and protostomian invertebrates, which include the ecdysozoans Drosophila melanogaster (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda). However, until recently, an understanding of evolutionary relationships between neuropeptide signalling systems in vertebrates and protostomes has been impaired by a lack of genome/transcriptome sequence data from non-ecdysozoan invertebrates. The echinoderms-a deuterostomian phylum that includes sea urchins, sea cucumbers and starfish-have been particularly important in providing new insights into neuropeptide evolution. Sequencing of the genome of the sea urchin Strongylocentrotus purpuratus (Class Echinoidea) enabled discovery of (i) the first invertebrate thyrotropin-releasing hormone-type precursor, (ii) the first deuterostomian pedal peptide/orcokinin-type precursors and (iii) NG peptides-the ''missing link'' between neuropeptide S in tetrapod vertebrates and crustacean cardioactive peptide in protostomes. More recently, sequencing of the neural transcriptome of the starfish Asterias rubens (Class Asteroidea) enabled identification of 40 neuropeptide precursors, including the first kisspeptin and melanin-concentrating hormone-type precursors to be identified outside of the chordates. Furthermore, the characterization of a corazonin-type neuropeptide signalling system in A. rubens has provided important new insights into the evolution of gonadotropin-releasing hormone-related neuropeptides. Looking forward, the discovery of multiple neuropeptide signalling systems in echinoderms provides opportunities to investigate how these systems are used to regulate physiological and behavioural processes in the unique context of a decentralized, pentaradial bauplan.

???displayArticle.pubmedLink??? 28444138
???displayArticle.pmcLink??? PMC5860471
???displayArticle.link??? Brief Funct Genomics


Genes referenced: LOC100887844 LOC576114 npas1


???attribute.lit??? ???displayArticles.show???
References [+] :
Adams, The genome sequence of Drosophila melanogaster. 2000, Pubmed