Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-45022
R Soc Open Sci 2016 Aug 31;38:160139. doi: 10.1098/rsos.160139.
Show Gene links Show Anatomy links

A newly identified left-right asymmetry in larval sea urchins.

Hodin J , Lutek K , Heyland A .


???displayArticle.abstract???
Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.

???displayArticle.pubmedLink??? 27853591
???displayArticle.pmcLink??? PMC5108941
???displayArticle.link??? R Soc Open Sci


Genes referenced: kin LOC100887844 LOC100893907


???attribute.lit??? ???displayArticles.show???
References [+] :
Adomako-Ankomah, P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo. 2011, Pubmed, Echinobase