Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-42922
Dev Biol 2013 Oct 01;3821:280-92. doi: 10.1016/j.ydbio.2013.06.019.
Show Gene links Show Anatomy links

An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes.

Solek CM , Oliveri P , Loza-Coll M , Schrankel CS , Ho EC , Wang G , Rast JP .


???displayArticle.abstract???
Although vertebrate hematopoiesis is the focus of intense study, immunocyte development is well-characterized in only a few invertebrate groups. The sea urchin embryo provides a morphologically simple model for immune cell development in an organism that is phylogenetically allied to vertebrates. Larval immunocytes, including pigment cells and several blastocoelar cell subtypes, emerge from a population of non-skeletal mesodermal (NSM) precursors that is specified at the blastula stage. This ring of cells is first partitioned into oral and aboral fields with distinct blastocoelar and pigment cell gene regulatory programs. The oral field is subsequently specified into several distinct immune and non-immune cell types during gastrulation. Here we characterize the oral NSM expression and downstream function of two homologs of key vertebrate hematopoietic transcription factors: SpGatac, an ortholog of vertebrate Gata-1/2/3 and SpScl, an ortholog of Scl/Tal-2/Lyl-1. Perturbation of SpGatac affects blastocoelar cell migration at gastrulation and later expression of immune effector genes, whereas interference with SpScl function disrupts segregation of pigment and blastocoelar cell precursors. Homologs of several transcription regulators that interact with Gata-1/2/3 and Scl factors in vertebrate hematopoiesis are also co-expressed in the oral NSM, including SpE-protein, the sea urchin homolog of vertebrate E2A/HEB/E2-2 and SpLmo2, an ortholog of a dedicated cofactor of the Scl-GATA transcription complex. Regulatory analysis of SpGatac indicates that oral NSM identity is directly suppressed in presumptive pigment cells by the transcription factor SpGcm. These findings provide part of a comparative basis to understand the evolutionary origins and regulatory biology of deuterostome immune cell differentiation in the context of a tractable gene regulatory network model.

???displayArticle.pubmedLink??? 23792116
???displayArticle.link??? Dev Biol
???displayArticle.grants??? [+]

Genes referenced: gata3 LOC100887844 LOC115919910 LOC115925133