Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-42056
Integr Comp Biol 2006 Dec 01;466:662-82. doi: 10.1093/icb/icl043.
Show Gene links Show Anatomy links

Interspecific variation in metamorphic competence in marine invertebrates: the significance for comparative investigations into the timing of metamorphosis.

Bishop CD , Huggett MJ , Heyland A , Hodin J , Brandhorst BP .


???displayArticle.abstract???
Metamorphosis in marine invertebrate larvae is a dynamic, environmentally dependent process that integrates ontogeny with habitat selection. The capacity of many marine invertebrate larvae to survive and maintain metamorphic competence in the absence of environmental cues has been hypothesized to be an adaptive convergence (Hadfield and others 2001). A survey of the literature reveals that a single generalized hypothesis about metamorphic competence as an adaptive convergence is not sufficient to account for interspecific variation in this character. In an attempt to capture this variation, we discuss the "desperate larva hypothesis" and propose two additional hypotheses called the "variable retention hypothesis" and the "death before dishonor hypothesis." To validate these additional hypotheses we collected data on taxa from the published literature and performed a contingency analysis to detect correlations between spontaneous metamorphosis, habitat specificity and/or larval life-history mode, three characters relevant to environmentally induced settlement and metamorphosis. In order to account for phylogenetic bias in these correlations, we also constructed a phylogeny of these taxa and again performed a character-correlation analysis. Both these tests suggest that juvenile habitat specificity is correlated to the capacity of individuals to retain the competent larval state in the absence of substrate cues and therefore validate the existence of more than one hypothesis about metamorphic competence. We provide new data from the sea urchin Lytechinus pictus that suggest that nitric oxide (NO) and thyroxine hormone signaling interact to determine the probability of settlement in response to a settlement cue. Similarly, we provide evidence that thyroxine signaling in the sand dollar Dendraster excentricus increases spontaneous metamorphosis in the absence of cues from adult conspecifics in a manner that is independent of larval age.

???displayArticle.pubmedLink??? 21672777
???displayArticle.link??? Integr Comp Biol


Genes referenced: LOC100887844