Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-40441
FASEB J 2008 Feb 01;222:612-21. doi: 10.1096/fj.07-8354com.
Show Gene links Show Anatomy links

SEA domain proteolysis determines the functional composition of dystroglycan.

Akhavan A , Crivelli SN , Singh M , Lingappa VR , Muschler JL .


???displayArticle.abstract???
Post-translational modifications of the extracellular matrix receptor dystroglycan (DG) determine its functional state, and defects in these modifications are linked to muscular dystrophies and cancers. A prominent feature of DG biosynthesis is a precursor cleavage that segregates the ligand-binding and transmembrane domains into the noncovalently attached alpha- and beta-subunits. We investigate here the structural determinants and functional significance of this cleavage. We show that cleavage of DG elicits a conspicuous change in its ligand-binding activity. Mutations that obstruct this cleavage result in increased capacity to bind laminin, in part, due to enhanced glycosylation of alpha-DG. Reconstitution of DG cleavage in a cell-free expression system demonstrates that cleavage takes place in the endoplasmic reticulum, providing a suitable regulatory point for later processing events. Sequence and mutational analyses reveal that the cleavage occurs within a full SEA (sea urchin, enterokinase, agrin) module with traits matching those ascribed to autoproteolysis. Thus, cleavage of DG constitutes a control point for the modulation of its ligand-binding properties, with therapeutic implications for muscular dystrophies. We provide a structural model for the cleavage domain that is validated by experimental analysis and discuss this cleavage in the context of mucin protein and SEA domain evolution.

???displayArticle.pubmedLink??? 17905726
???displayArticle.link??? FASEB J
???displayArticle.grants??? [+]

Genes referenced: dag1 LOC100887844 LOC100890608 LOC115918117 LOC115919910 LOC586604