Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37243
Development 1999 Sep 01;12617:3857-67. doi: 10.1242/dev.126.17.3857.
Show Gene links Show Anatomy links

EST analysis of gene expression in early cleavage-stage sea urchin embryos.

Lee YH , Huang GM , Cameron RA , Graham G , Davidson EH , Hood L , Britten RJ .


???displayArticle.abstract???
A set of 956 expressed sequence tags derived from 7-hour (mid-cleavage) sea urchin embryos was analyzed to assess biosynthetic functions and to illuminate the structure of the message population at this stage. About a quarter of the expressed sequence tags represented repetitive sequence transcripts typical of early embryos, or ribosomal and mitochondrial RNAs, while a majority of the remainder contained significant open reading frames. A total of 232 sequences, including 153 different proteins, produced significant matches when compared against GenBank. The majority of these identified sequences represented ''housekeeping'' proteins, i.e., cytoskeletal proteins, metabolic enzymes, transporters and proteins involved in cell division. The most interesting finds were components of signaling systems and transcription factors not previously reported in early sea urchin embryos, including components of Notch and TGF signal transduction pathways. As expected from earlier kinetic analyses of the embryo mRNA populations, no very prevalent protein-coding species were encountered; the most highly represented such sequences were cDNAs encoding cyclins A and B. The frequency of occurrence of all sequences within the database was used to construct a sequence prevalence distribution. The result, confirming earlier mRNA population analyses, indicated that the poly(A) RNA of the early embryo consists mainly of a very complex set of low-copy-number transcripts.

???displayArticle.pubmedLink??? 10433914
???displayArticle.link??? Development


Genes referenced: LOC100887844 LOC115919910 LOC583082