Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-35949
Dev Biol 1994 Aug 01;1642:562-78. doi: 10.1006/dbio.1994.1224.
Show Gene links Show Anatomy links

Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.

Malinda KM , Ettensohn CA .


???displayArticle.abstract???
The directional migration of the primary mesenchyme cells (PMCs) of the sea urchin embryo is a critical step in the process of gastrulation. Although interactions between the migrating cells and the blastocoel environment are necessary for guiding the PMCs to their subequatorial target site, the nature of these interactions and the localization of guidance cues involved in directing the cells are not yet known. Previous studies have suggested that PMC migration is the result of random exploration and selective trapping at the target site by a pattern of adhesiveness in the ectoderm or basal lamina. To better characterize the distribution of guidance cues in the blastocoel we used a combination of time-lapse microscopy, microsurgery, and fluorescence photoablation to study the behavior of the migrating cells. By using fluorescence time-lapse microscopy, and a two-dimensional random-walk analysis of cell trajectories, we demonstrated that fluorescently labeled PMCs injected near the animal pole move in a directed fashion over a relatively long distance to reach the target site. This suggests that guidance cues are distributed globally throughout the embryo and are not restricted to the immediate ring area. To further test this hypothesis we investigated the migratory behavior of PMCs that were prevented from interacting directly with the target site. First, we examined the behavior of PMCs injected into animal embryo fragments lacking the target site. We found that PMCs move to the vegetal-most area of such embryo fragments, regardless of their size. Second, we studied the effects of photoablating a stripe of ectoderm between PMCs injected at the animal pole region (APR) and the target site. PMCs were found to accumulate along the ablated stripe and were unable to cross it for up to 6 hr after ablation. We also examined the migratory behavior of endogenous PMCs in embryos treated with lithium, a vegetalizing agent which shifts the position of the PMC ring toward the animal pole. We found that PMCs accumulated along an ablated stripe of ectoderm positioned below the shifted target site, suggesting that endogenous PMCs follow a set of directional cues to the target site which may be similar to those used by PMCs injected into the APR. As a whole, these results suggest that migrating PMCs follow a set of directional cues that are widely distributed throughout the blastocoel and that may be arranged in a gradient.

???displayArticle.pubmedLink??? 8045352
???displayArticle.link??? Dev Biol
???displayArticle.grants??? [+]

Genes referenced: LOC100887844 LOC115919910 LOC583082 pole
???displayArticle.antibodies??? msp130 Ab6