Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-32773
Exp Cell Res 1986 Sep 01;1661:191-208. doi: 10.1016/0014-4827(86)90519-7.
Show Gene links Show Anatomy links

Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice.

Schatten G , Schatten H , Spector I , Cline C , Paweletz N , Simerly C , Petzelt C .


???displayArticle.abstract???
Latrunculin A, a marine toxin from a Red Sea sponge, is a potent inhibitor of the microfilament-mediated processes of fertilization and early development in sea urchins and in mice. Sperm from sea urchins, but not those from Limulus or mice, were affected by latrunculin, and fertilization in both sea urchins and in mice was arrested but at different stages. Sea urchin sperm treated with 2.6 microM latrunculin are unable to assemble acrosomal processes and their ability to fertilize eggs is impaired. The unwinding of the Limulus sperm acrosomal process occurs in the presence of latrunculin. Treated mouse sperm are able to fertilize mouse oocytes in vitro, suggesting that microfilaments may not be required in this mammalian sperm. In sea urchin eggs, sperm incorporation, microvillar elongation and cytokinesis are inhibited. Microtubule-mediated motility occurs normally. 20 nM latrunculin prevents the morphogenetic movements during gastrulation. It reduces the viscosity of actin gels from sea urchin egg homogenates. In unfertilized mouse oocytes, it prevents the colcemid-induced dispersion of the meiotic chromosomes; accumulations of cortical actin are noted adjacent to the scattered chromosomes. Sperm incorporation during mouse fertilization in vitro is unaffected suggesting that sperm entry may occur independent of microfilament activity in mammals. However, the apposition of the pronuclei at the center of the egg cytoplasm does not occur, providing evidence that cytoplasmic microfilaments may be required for the motions leading to pronuclear union during mouse fertilization. It inhibits the second polar body formation and cytokinesis. These results indicate that latrunculin is a potent inhibitor of microfilament-mediated processes in sperm, eggs and embryos, and that it may prove to be a powerful new drug for exploring the cellular behavior of microfilaments in the maintenance of cell shape and during motility.

???displayArticle.pubmedLink??? 3743654
???displayArticle.link??? Exp Cell Res


Genes referenced: LOC100887844 LOC115919910 LOC590297