Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Proc Natl Acad Sci U S A 1990 Oct 01;8720:7953-7. doi: 10.1073/pnas.87.20.7953.
Show Gene links Show Anatomy links

Rare maternal mRNAs code for regulatory proteins that control lineage-specific gene expression in the sea urchin embryo.

Cutting AE , Höög C , Calzone FJ , Britten RJ , Davidson EH .

The prevalence of mRNAs coding for the sea urchin embryo regulatory factors P3A1 and P3A2 was measured by single-strand probe excess solution hybridization. P3A1 and P3A2 are not homologous proteins, though they both bind specifically to a particular cis-regulatory sequence. Interaction at this target site is known to be required for lineage-specific expression of an aboral ectoderm-specific gene and probably for several other genes as well. Genome blot hybridizations show that both factors are encoded by single-copy genes. Maternal mRNAs for both factors are present at less than 10(3) molecules per egg, which places them in the rare mRNA class. During development to the mesenchyme blastula stage, the amount of P3A1 mRNA (per embryo) increases severalfold while that of P3A2 remains approximately constant. Specification of the aboral ectoderm founder cells and of their initial patterns of gene expression must occur during early to mid-cleavage stage. Therefore, the regulatory proteins needed for this process must be produced by this stage. We show that the quantities of the P3A proteins that can be synthesized from the numbers of mRNA molecules present in the large blastomeres of the early embryo are sufficient to be functional, because these proteins will be accumulated in the nuclei. Thus maternal P3A1 or P3A2 proteins asre not required, nor were these detected in earlier studies. Furthermore, differential spatial (as well as temporal) distribution of both of these newly synthesized factor species could result from the unequal cleavage pattern utilized in the sea urchin egg.

PubMed ID: 1700421
PMC ID: PMC54870
Article link: Proc Natl Acad Sci U S A
Grant support: [+]

Genes referenced: LOC100887844 LOC115925415 nrf1

References [+] :
Anderson, Sequence complexity of the RNA accumulated in oocytes of Arbacia punctulata. 1976, Pubmed, Echinobase