Results 1 - 32 of 32 results
A tumor suppressor Retinoblastoma1 is essential for embryonic development in the sea urchin. , Fernandez-Nicolas A, Xu D, Yajima M ., Dev Dyn. December 1, 2019; 248 (12): 1273-1285.
Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. , Poon J, Fries A, Wessel GM , Yajima M ., Nat Commun. August 22, 2019; 10 (1): 3779.
An optogenetic approach to control protein localization during embryogenesis of the sea urchin. , Uchida A, Yajima M ., Dev Biol. September 1, 2018; 441 (1): 19-30.
Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. , Fresques TM, Wessel GM ., Development. January 22, 2018; 145 (2):
Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. , Oulhen N , Heyland A , Carrier TJ, Zazueta-Novoa V, Fresques T, Laird J, Onorato TM, Janies D, Wessel G ., Mech Dev. November 1, 2016; 142 10-21.
Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins. , Bodnar AG , Coffman JA ., Aging Cell. August 1, 2016; 15 (4): 778-87.
The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification. , Fresques T, Swartz SZ, Juliano C , Morino Y, Kikuchi M, Akasaka K , Wada H, Yajima M , Wessel GM ., Evol Dev. July 1, 2016; 18 (4): 267-78.
Localization of germ plasm-related structures during sea urchin oogenesis. , Yakovlev KV., Dev Dyn. January 1, 2016; 245 (1): 56-66.
A K(+)-selective CNG channel orchestrates Ca(2+) signalling in zebrafish sperm. , Fechner S, Alvarez L, Bönigk W, Müller A, Berger TK, Pascal R, Trötschel C, Poetsch A, Stölting G, Siegfried KR, Kremmer E, Seifert R, Kaupp UB., Elife. December 9, 2015; 4
Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo. , Martik ML, McClay DR ., Elife. September 24, 2015; 4
Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers. , Reinardy HC, Emerson CE, Manley JM, Bodnar AG ., PLoS One. August 5, 2015; 10 (8): e0133860.
Essential elements for translation: the germline factor Vasa functions broadly in somatic cells. , Yajima M , Wessel GM ., Development. June 1, 2015; 142 (11): 1960-70.
Deadenylase depletion protects inherited mRNAs in primordial germ cells. , Swartz SZ, Reich AM, Oulhen N , Raz T, Milos PM, Campanale JP, Hamdoun A , Wessel GM ., Development. August 1, 2014; 141 (16): 3134-42.
Protein degradation machinery is present broadly during early development in the sea urchin. , Zazueta-Novoa V, Wessel GM ., Gene Expr Patterns. July 1, 2014; 15 (2): 135-41.
Origin and development of the germ line in sea stars. , Wessel GM , Fresques T, Kiyomoto M , Yajima M , Zazueta V., Genesis. May 1, 2014; 52 (5): 367-77.
A multicopy Y-chromosomal SGNH hydrolase gene expressed in the testis of the platyfish has been captured and mobilized by a Helitron transposon. , Tomaszkiewicz M, Chalopin D, Schartl M, Galiana D, Volff JN., BMC Genet. April 8, 2014; 15 44.
Piwi regulates Vasa accumulation during embryogenesis in the sea urchin. , Yajima M , Gustafson EA, Song JL , Wessel GM ., Dev Dyn. March 1, 2014; 243 (3): 451-8.
An essential role for maternal control of Nodal signaling. , Kumari P, Gilligan PC, Lim S, Tran LD, Winkler S, Philp R, Sampath K., Elife. September 10, 2013; 2 e00683.
Gonadogenesis and expression pattern of the vasa gene in the sea cucumber Apostichopus japonicus during early development. , Yu L, Yan M, Sui J, Sheng WQ, Zhang ZF., Mol Reprod Dev. September 1, 2013; 80 (9): 744-52.
The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA processes and developmental biology. , Lasko P., Biochim Biophys Acta. August 1, 2013; 1829 (8): 810-6.
Expression pattern of vasa in gonads of sea cucumber Apostichopus japonicus during gametogenesis and reproductive cycle. , Yan M, Sui J, Sheng W, Shao M, Zhang Z., Gene Expr Patterns. January 1, 2013; 13 (5-6): 171-6.
Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin. , Yajima M , Wessel GM ., Development. October 1, 2012; 139 (20): 3786-94.
Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. , Luo YJ, Su YH ., PLoS Biol. January 1, 2012; 10 (10): e1001402.
The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin. , Yajima M , Wessel GM ., Development. June 1, 2011; 138 (11): 2217-22.
Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis. , Gustafson EA, Yajima M , Juliano CE , Wessel GM ., Dev Biol. January 15, 2011; 349 (2): 440-50.
Small micromeres contribute to the germline in the sea urchin. , Yajima M , Wessel GM ., Development. January 1, 2011; 138 (2): 237-43.
Isolation of oogonia from ovaries of the sea urchin Strongylocentrotus nudus. , Yakovlev KV, Battulin NR, Serov OL, Odintsova NA., Cell Tissue Res. December 1, 2010; 342 (3): 479-90.
Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. , Juliano CE , Yajima M , Wessel GM ., Dev Biol. January 15, 2010; 337 (2): 220-32.
An evolutionary transition of Vasa regulation in echinoderms. , Juliano CE , Wessel GM ., Evol Dev. January 1, 2009; 11 (5): 560-73.
Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. , Voronina E, Lopez M, Juliano CE , Gustafson E, Song JL , Extavour C, George S, Oliveri P , McClay D , Wessel G ., Dev Biol. February 15, 2008; 314 (2): 276-86.
Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. , Juliano CE , Voronina E, Stack C, Aldrich M, Cameron AR, Wessel GM ., Dev Biol. December 1, 2006; 300 (1): 406-15.
[Quantitative analysis of ligand-receptor interactions in physiological experiments]. , Manukhin BN, Berdysheva LV, Boĭko OV, Kichikulova TP, Nesterova LA., Ross Fiziol Zh Im I M Sechenova. October 1, 1998; 84 (10): 1049-60.