Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (32) GO Terms (2) Nucleotides (8) Proteins (4) Interactants (90) Wiki
ECB-GENEPAGE-23104829

Papers associated with pmar1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

pmar1/phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms., Yamazaki A, Morino Y, Urata M, Yamaguchi M, Minokawa T, Furukawa R, Kondo M, Wada H., Development. February 26, 2020; 147 (4):


The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA, Adomako-Ankomah A., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Perturbation of Developmental Regulatory Gene Expression by a G-Quadruplex DNA Inducer in the Sea Urchin Embryo., Turturici G, La Fiora V, Terenzi A, Barone G, Cavalieri V., Biochemistry. July 31, 2018; 57 (30): 4391-4394.


Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family., Cavalieri V, Geraci F, Spinelli G., PLoS One. March 28, 2017; 12 (3): e0174404.              


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P., Evodevo. January 1, 2016; 7 2.            


Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo., Cavalieri V, Spinelli G., PLoS One. November 3, 2015; 10 (11): e0143860.        


microRNA-31 modulates skeletal patterning in the sea urchin embryo., Stepicheva NA, Song JL., Development. November 1, 2015; 142 (21): 3769-80.


Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A, Minokawa T., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V, Spinelli G., Elife. December 2, 2014; 3 e04664.                            


bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S, Yaguchi J, Inaba K., Sci Rep. October 31, 2014; 4 6852.            


The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates., Elphick MR, Mirabeau O., Front Endocrinol (Lausanne). May 13, 2014; 5 93.        


The Compass-like locus, exclusive to the Ambulacrarians, encodes a chromatin insulator binding protein in the sea urchin embryo., Cavalieri V, Melfi R, Spinelli G., PLoS Genet. January 1, 2013; 9 (9): e1003847.        


Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus., Damle S, Davidson EH., Dev Biol. September 15, 2011; 357 (2): 505-17.


Regulative deployment of the skeletogenic gene regulatory network during sea urchin development., Sharma T, Ettensohn CA., Development. June 1, 2011; 138 (12): 2581-90.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK, McClay DR., Development. March 1, 2011; 138 (5): 937-45.


Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida., Yamazaki A, Furuzawa Y, Yamaguchi M., Dev Dyn. December 1, 2010; 239 (12): 3391-403.


Activation of the skeletogenic gene regulatory network in the early sea urchin embryo., Sharma T, Ettensohn CA., Development. April 1, 2010; 137 (7): 1149-57.


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka AJ., BMC Syst Biol. August 23, 2009; 3 83.                      


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ, Angerer RC, Angerer LM., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Structure-function correlation of micro1 for micromere specification in sea urchin embryos., Yamazaki A, Ki S, Kokubo T, Yamaguchi M., Mech Dev. January 1, 2009; 126 (8-9): 611-23.


cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo., Cavalieri V, Di Bernardo M, Anello L, Spinelli G., Dev Biol. September 15, 2008; 321 (2): 455-69.


A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres., Revilla-i-Domingo R, Oliveri P, Davidson EH., Proc Natl Acad Sci U S A. July 24, 2007; 104 (30): 12383-8.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY, McClay DR., Development. March 1, 2007; 134 (6): 1061-70.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A, Kawabata R, Shiomi K, Amemiya S, Sawaguchi M, Mitsunaga-Nakatsubo K, Yamaguchi M., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM, Newman LA, Angerer RC., Development. March 1, 2005; 132 (5): 999-1008.


Structure, regulation, and function of micro1 in the sea urchin Hemicentrotus pulcherrimus., Nishimura Y, Sato T, Morita Y, Yamazaki A, Akasaka K, Yamaguchi M., Dev Genes Evol. November 1, 2004; 214 (11): 525-36.


R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres., Revilla-i-Domingo R, Minokawa T, Davidson EH., Dev Biol. October 15, 2004; 274 (2): 438-51.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O, Amore G, Minokawa T, McClay DR, Davidson EH., Dev Biol. September 15, 2004; 273 (2): 226-43.


Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo., Ettensohn CA, Illies MR, Oliveri P, De Jong DL., Development. July 1, 2003; 130 (13): 2917-28.              


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P, Davidson EH, McClay DR., Dev Biol. June 1, 2003; 258 (1): 32-43.


A regulatory gene network that directs micromere specification in the sea urchin embryo., Oliveri P, Carrick DM, Davidson EH., Dev Biol. June 1, 2002; 246 (1): 209-28.


Transient activation of the micro1 homeobox gene family in the sea urchin ( Hemicentrotus pulcherrimus) micromere., Kitamura K, Nishimura Y, Kubotera N, Higuchi Y, Yamaguchi M., Dev Genes Evol. February 1, 2002; 212 (1): 1-10.

???pagination.result.page??? 1