Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (34) GO Terms (0) Nucleotides (7) Proteins (63) Interactants (75) Wiki
ECB-GENEPAGE-23087252

Papers associated with endo16



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus., Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN., Dev Biol. July 1, 2021; 475 131-144.


How Does the Regulatory Genome Work?, Istrail S, Peter IS., J Comput Biol. July 1, 2019; 26 (7): 685-695.


Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling., Shashikant T, Khor JM, Ettensohn CA., BMC Genomics. March 20, 2018; 19 (1): 206.            


Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL, Wei Z, Beres TM, Milac AL, Tran DT, Patel D, Angerer RC, Angerer LM, Tabak LA., PLoS One. April 17, 2017; 12 (4): e0176479.            


bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S, Yaguchi J, Inaba K., Sci Rep. October 31, 2014; 4 6852.            


Population genetics of cis-regulatory sequences that operate during embryonic development in the sea urchin Strongylocentrotus purpuratus., Garfield D, Haygood R, Nielsen WJ, Wray GA., Evol Dev. January 1, 2012; 14 (2): 152-67.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ, Angerer RC, Angerer LM., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut., Cole AG, Rizzo F, Martinez P, Fernandez-Serra M, Arnone MI., Development. February 1, 2009; 136 (4): 541-9.


Sequential logic model deciphers dynamic transcriptional control of gene expressions., Yeo ZX, Wong ST, Arjunan SN, Piras V, Tomita M, Selvarajoo K, Giuliani A, Tsuchiya M., PLoS One. August 22, 2007; 2 (8): e776.                  


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G., Genome Biol. January 1, 2007; 8 (5): R85.                


Endo16 is required for gastrulation in the sea urchin Lytechinus variegatus., Romano LA, Wray GA., Dev Growth Differ. October 1, 2006; 48 (8): 487-97.


Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites., Balhoff JP, Wray GA., Proc Natl Acad Sci U S A. June 14, 2005; 102 (24): 8591-6.


Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo., Yuh CH, Dorman ER, Davidson EH., Dev Biol. May 15, 2005; 281 (2): 286-98.


cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin., Cameron RA, Oliveri P, Wyllie J, Davidson EH., Gene Expr Patterns. March 1, 2004; 4 (2): 205-13.


Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation., Romano LA, Wray GA., Development. September 1, 2003; 130 (17): 4187-99.


Modeling DNA sequence-based cis-regulatory gene networks., Bolouri H, Davidson EH., Dev Biol. June 1, 2002; 246 (1): 2-13.


Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene., Martin EL, Consales C, Davidson EH, Arnone MI., Dev Biol. August 1, 2001; 236 (1): 46-63.


Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements., Yuh CH, Li X, Davidson EH, Klein WH., Dev Biol. April 15, 2001; 232 (2): 424-38.


Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control., Yuh CH, Bolouri H, Davidson EH., Development. March 1, 2001; 128 (5): 617-29.


Cis-regulation downstream of cell type specification: a single compact element controls the complex expression of the CyIIa gene in sea urchin embryos., Arnone MI, Martin EL, Davidson EH., Development. April 1, 1998; 125 (8): 1381-95.


Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo., Ransick A, Davidson EH., Dev Biol. March 1, 1998; 195 (1): 38-48.


Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae., Arnone MI, Bogarad LD, Collazo A, Kirchhamer CV, Cameron RA, Rast JP, Gregorians A, Davidson EH., Development. November 1, 1997; 124 (22): 4649-59.


Specification of endoderm in the sea urchin embryo., Godin RE, Klinzing DC, Porcaro WA, Ernst SG., Mech Dev. September 1, 1997; 67 (1): 35-47.


Quantitative functional interrelations within the cis-regulatory system of the S. purpuratus Endo16 gene., Yuh CH, Moore JG, Davidson EH., Development. December 1, 1996; 122 (12): 4045-56.


Developmental expression of synthetic cis-regulatory systems composed of spatial control elements from two different genes., Kirchhamer CV, Bogarad LD, Davidson EH., Proc Natl Acad Sci U S A. November 26, 1996; 93 (24): 13849-54.


Alternative splicing of the Endo16 transcript produces differentially expressed mRNAs during sea urchin gastrulation., Godin RE, Urry LA, Ernst SG., Dev Biol. October 10, 1996; 179 (1): 148-59.


Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples., Kirchhamer CV, Yuh CH, Davidson EH., Proc Natl Acad Sci U S A. September 3, 1996; 93 (18): 9322-8.


Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo., Yuh CH, Davidson EH., Development. April 1, 1996; 122 (4): 1069-82.


Micromeres are required for normal vegetal plate specification in sea urchin embryos., Ransick A, Davidson EH., Development. October 1, 1995; 121 (10): 3215-22.


Molecular cloning, characterization, and genetic mapping of the cDNA coding for a novel secretory protein of mouse. Demonstration of alternative splicing in skin and cartilage., Bhalerao J, Tylzanowski P, Filie JD, Kozak CA, Merregaert J., J Biol Chem. July 7, 1995; 270 (27): 16385-94.


Endo16, a large multidomain protein found on the surface and ECM of endodermal cells during sea urchin gastrulation, binds calcium., Soltysik-Española M, Klinzing DC, Pfarr K, Burke RD, Ernst SG., Dev Biol. September 1, 1994; 165 (1): 73-85.


Complexity and organization of DNA-protein interactions in the 5''-regulatory region of an endoderm-specific marker gene in the sea urchin embryo., Yuh CH, Ransick A, Martinez P, Britten RJ, Davidson EH., Mech Dev. August 1, 1994; 47 (2): 165-86.


Altered cell fate in LiCl-treated sea urchin embryos., Nocente-McGrath C, McIsaac R, Ernst SG., Dev Biol. October 1, 1991; 147 (2): 445-50.


Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation., Nocente-McGrath C, Brenner CA, Ernst SG., Dev Biol. November 1, 1989; 136 (1): 264-72.

???pagination.result.page??? 1