Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications(66)
ECB-PERS-4193

Publications By Fred H Wilt

Results 1 - 50 of 66 results

Page(s): 1 2 Next


From hemoglobin to urchin spicules., Wilt F., Methods Cell Biol. January 1, 2019; 151 43-45.


Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis., Killian CE, Wilt FH., Exp Cell Res. October 1, 2017; 359 (1): 205-214.


SM30 protein function during sea urchin larval spicule formation., Wilt F, Killian CE, Croker L, Hamilton P., J Struct Biol. August 1, 2013; 183 (2): 199-204.


Phase transitions in biogenic amorphous calcium carbonate., Gong YU, Killian CE, Olson IC, Appathurai NP, Amasino AL, Martin MC, Holt LJ, Wilt FH, Gilbert PU., Proc Natl Acad Sci U S A. April 17, 2012; 109 (16): 6088-93.


Molecular aspects of biomineralization of the echinoderm endoskeleton., Gilbert PU, Wilt FH., Prog Mol Subcell Biol. January 1, 2011; 52 199-223.


Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix., Mann K, Wilt FH, Poustka AJ., Proteome Sci. June 17, 2010; 8 33.      


SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus., Killian CE, Croker L, Wilt FH., Gene Expr Patterns. January 1, 2010; 10 (2-3): 135-9.


Mechanism of calcite co-orientation in the sea urchin tooth., Killian CE, Metzler RA, Gong YU, Olson IC, Aizenberg J, Politi Y, Wilt FH, Scholl A, Young A, Doran A, Kunz M, Tamura N, Coppersmith SN, Gilbert PU., J Am Chem Soc. December 30, 2009; 131 (51): 18404-9.


Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule., Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PU, Gilbert P., Proc Natl Acad Sci U S A. November 11, 2008; 105 (45): 17362-6.


Molecular aspects of biomineralization of the echinoderm endoskeleton., Killian CE, Wilt FH., Chem Rev. November 1, 2008; 108 (11): 4463-74.


The dynamics of secretion during sea urchin embryonic skeleton formation., Wilt FH, Killian CE, Hamilton P, Croker L., Exp Cell Res. May 1, 2008; 314 (8): 1744-52.


Probing the organic-mineral interface at the molecular level in model biominerals., Metzler RA, Kim IW, Delak K, Evans JS, Zhou D, Beniash E, Wilt F, Abrecht M, Chiou JW, Guo J, Coppersmith SN, Gilbert PU., Langmuir. March 18, 2008; 24 (6): 2680-7.


A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation., Roux MM, Townley IK, Raisch M, Reade A, Bradham C, Humphreys G, Gunaratne HJ, Killian CE, Moy G, Su YH, Ettensohn CA, Wilt F, Vacquier VD, Burke RD, Wessel G, Foltz KR., Dev Biol. December 1, 2006; 300 (1): 416-33.


The genome of the sea urchin Strongylocentrotus purpuratus., null null, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R., Science. November 10, 2006; 314 (5801): 941-52.


Developmental biology meets materials science: Morphogenesis of biomineralized structures., Wilt FH., Dev Biol. April 1, 2005; 280 (1): 15-25.


The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae., Seto J, Zhang Y, Hamilton P, Wilt F., J Struct Biol. October 1, 2004; 148 (1): 123-30.


Isolation and culture of micromeres and primary mesenchyme cells., Wilt FH, Benson SC., Methods Cell Biol. January 1, 2004; 74 273-85.


Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells., Ingersoll EP, McDonald KL, Wilt FH., J Exp Zool A Comp Exp Biol. December 1, 2003; 300 (2): 101-12.


Biomineralization of the spicules of sea urchin embryos., Wilt FH., Zoolog Sci. March 1, 2002; 19 (3): 253-61.


Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule., Peled-Kamar M, Hamilton P, Wilt FH., Exp Cell Res. January 1, 2002; 272 (1): 56-61.


Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis., Urry LA, Hamilton PC, Killian CE, Wilt FH., Dev Biol. September 1, 2000; 225 (1): 201-13.


Matrix and mineral in the sea urchin larval skeleton., Wilt FH., J Struct Biol. June 30, 1999; 126 (3): 216-26.


Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos., Yamasu K, Wilt FH., Dev Growth Differ. February 1, 1999; 41 (1): 81-91.


Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo., Ingersoll EP, Wilt FH., Dev Biol. April 1, 1998; 196 (1): 95-106.


Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis., Wilt FH., Bioessays. August 1, 1997; 19 (8): 665-8.


Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus., Kitajima T, Tomita M, Killian CE, Akasaka K, Wilt FH., Dev Growth Differ. December 1, 1996; 38 (6): 687-95.


Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules., Killian CE, Wilt FH., J Biol Chem. April 12, 1996; 271 (15): 9150-9.


Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus., Akasaka K, Frudakis TN, Killian CE, George NC, Yamasu K, Khaner O, Wilt FH., J Biol Chem. August 12, 1994; 269 (32): 20592-8.


Phorbol esters alter cell fate during development of sea urchin embryos., Livingston BT, Wilt FH., J Cell Biol. December 1, 1992; 119 (6): 1641-8.


Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein., George NC, Killian CE, Wilt FH., Dev Biol. October 1, 1991; 147 (2): 334-42.


The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus., Katoh-Fukui Y, Noce T, Ueda T, Fujiwara Y, Hashimoto N, Higashinakagawa T, Killian CE, Livingston BT, Wilt FH, Benson SC., Dev Biol. May 1, 1991; 145 (1): 201-2.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT, Wilt FH., Development. March 1, 1990; 108 (3): 403-10.


Determination of cell fate in sea urchin embryos., Livingston BT, Wilt FH., Bioessays. March 1, 1990; 12 (3): 115-9.


The accumulation and translation of a spicule matrix protein mRNA during sea urchin embryo development., Killian CE, Wilt FH., Dev Biol. May 1, 1989; 133 (1): 148-56.


Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos., Livingston BT, Wilt FH., Proc Natl Acad Sci U S A. May 1, 1989; 86 (10): 3669-73.


Changes in the synthesis and intracellular localization of nuclear proteins during embryogenesis in the sea urchin Strongylocentrotus purpuratus., Servetnick MD, Wilt FH., Dev Biol. September 1, 1987; 123 (1): 231-44.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


The role of RNA polymerase initiation and elongation in control of total RNA and histone mRNA synthesis in sea urchin embryos., Uzman JA, Wilt FH., Dev Biol. November 1, 1984; 106 (1): 174-80.


Accumulation of the early histone messenger RNAs during the development of Strongylocentrotus purpuratus., Maxson RE, Wilt FH., Dev Biol. December 1, 1982; 94 (2): 435-40.


The program of Hl histone synthesis in S. purpuratus embryos and the control of its timing., Harrison MF, Wilt FH., J Exp Zool. November 1, 1982; 223 (3): 245-56.


Direct measurement of histone peptide elongation rate in cleaving sea urchin embryos., Goustin AS, Wilt FH., Biochim Biophys Acta. October 29, 1982; 699 (1): 22-7.


Chromatin proteins of sea urchin embryos: dual origin from an oogenetic reservoir and new synthesis., Kuhn O, Wilt FH., Dev Biol. July 30, 1981; 85 (2): 416-24.


The rate of synthesis of histone mRNA during the development of sea urchin embryos (Strongylocentrotus purpuratus)., Maxson RE, Wilt FH., Dev Biol. April 30, 1981; 83 (2): 380-6.


Protein synthesis, polyribosomes, and peptide elongation in early development of Strongylocentrotus purpuratus., Goustin AS, Wilt FH., Dev Biol. February 1, 1981; 82 (1): 32-40.


Double labeling of chromatin proteins, in vivo and in vitro, and their two-dimensional electrophoretic resolution., Kuhn O, Wilt FH., Anal Biochem. July 1, 1980; 105 (2): 274-80.


The functional stability of sea urchin histone mRNA injected into oocytes of Xenopus laevis., Woodland HR, Wilt FH., Dev Biol. March 1, 1980; 75 (1): 199-213.


The stability and translation of sea urchin histone messenger RNA molecules injected into Xenopus laevis eggs and developing embryos., Woodland HR, Wilt FH., Dev Biol. March 1, 1980; 75 (1): 214-21.


Changes in poly(adenylic acid) polymerase activity during sea urchin embryogenesis., Egrie JC, Wilt FH., Biochemistry. January 23, 1979; 18 (2): 269-74.


The dynamics of maternal poly(A)-containing mRNA in fertilized sea urchin eggs., Wilt FH., Cell. July 1, 1977; 11 (3): 673-81.


Incorporation of 13C, 15N-labeled nucleosides and measurement of RNA synthesis and turnover in sea urchin embryos., Grainger RM, Wilt FH., J Mol Biol. July 5, 1976; 104 (3): 589-601.

Page(s): 1 2 Next