Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications(26)
ECB-PERS-4160

Publications By Takuya Minokawa

Results 1 - 26 of 26 results

Page(s): 1


An easy and rapid staining method for confocal microscopic observation and reconstruction of three-dimensional images of echinoderm larvae and juveniles., Tokanai K, Kamei Y, Minokawa T., Dev Growth Differ. December 1, 2021; 63 (9): 478-487.


pmar1/phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms., Yamazaki A, Morino Y, Urata M, Yamaguchi M, Minokawa T, Furukawa R, Kondo M, Wada H., Development. February 26, 2020; 147 (4):


Cidaroids, clypeasteroids, and spatangoids: Procurement, culture, and basic methods., Hibino T, Minokawa T, Yamazaki A., Methods Cell Biol. January 1, 2019; 150 81-103.


Anteroposterior molecular registries in ectoderm of the echinus rudiment., Adachi S, Niimi I, Sakai Y, Sato F, Minokawa T, Urata M, Sehara-Fujisawa A, Kobayashi I, Yamaguchi M., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.


Comparative studies on the skeletogenic mesenchyme of echinoids., Minokawa T., Dev Biol. July 15, 2017; 427 (2): 212-218.


Roles of hesC and gcm in echinoid larval mesenchyme cell development., Yamazaki A, Minokawa T., Dev Growth Differ. April 1, 2016; 58 (3): 315-26.


Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A, Minokawa T., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.


Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S, Urata M, Minokawa T, Stach T, Wanninger A., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              


Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate., Yamazaki A, Kidachi Y, Yamaguchi M, Minokawa T., Development. July 1, 2014; 141 (13): 2669-79.


"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa., Yamazaki A, Kidachi Y, Minokawa T., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.


Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K, Yamaguchi M, Minokawa T., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.


Role of the nanos homolog during sea urchin development., Fujii T, Sakamoto N, Ochiai H, Fujita K, Okamitsu Y, Sumiyoshi N, Minokawa T, Yamamoto T., Dev Dyn. October 1, 2009; 238 (10): 2511-21.


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M, Ishizuka Y, Nakajima Y, Amemiya S, Minokawa T., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes., Nakata H, Minokawa T., Gene Expr Patterns. March 1, 2009; 9 (3): 152-7.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T, Wikramanayake AH, Davidson EH., Dev Biol. December 15, 2005; 288 (2): 545-58.


Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins)., Hibino T, Harada Y, Minokawa T, Nonaka M, Amemiya S., Dev Genes Evol. November 1, 2004; 214 (11): 546-58.


R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres., Revilla-i-Domingo R, Minokawa T, Davidson EH., Dev Biol. October 15, 2004; 274 (2): 438-51.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O, Amore G, Minokawa T, McClay DR, Davidson EH., Dev Biol. September 15, 2004; 273 (2): 226-43.


Expression patterns of four different regulatory genes that function during sea urchin development., Minokawa T, Rast JP, Arenas-Mena C, Franco CB, Davidson EH., Gene Expr Patterns. July 1, 2004; 4 (4): 449-56.


Blastomere isolation and transplantation., Sweet H, Amemiya S, Ransick A, Minokawa T, McClay DR, Wikramanayake A, Kuraishi R, Kiyomoto M, Nishida H, Henry J., Methods Cell Biol. January 1, 2004; 74 243-71.


New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization., Ransick A, Rast JP, Minokawa T, Calestani C, Davidson EH., Dev Biol. June 1, 2002; 246 (1): 132-47.


A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo., Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Schilstra MJ, Clarke PJ, Rust AG, Pan Z, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H., Dev Biol. June 1, 2002; 246 (1): 162-90.


A genomic regulatory network for development., Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Zj, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H., Science. March 1, 2002; 295 (5560): 1669-78.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y, Minokawa T, Amemiya S., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica., Iijima M, Ishizuka Y, Minokawa T, Amemiya S., Zygote. January 1, 2000; 8 Suppl 1 S80.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T, Amemiya S., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.

Page(s): 1