Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications(15)
ECB-PERS-4074

Publications By Robert Morris

Results 1 - 15 of 15 results

Page(s): 1


Testing the efficacy of sea urchin exclusion methods for restoring kelp., Sharma R, Swearer SE, Morris RL, Strain EMA., Mar Environ Res. August 1, 2021; 170 105439.


Sea urchin embryonic cilia., Morris RL, Vacquier VD., Methods Cell Biol. January 1, 2019; 150 235-250.


Exploring the sea urchin genome with undergraduates using bioinformatic tools., Romano L, Byrum C, Lee PY, Morris RL., Methods Cell Biol. January 1, 2019; 150 449-469.


Methods for imaging individual cilia in living echinoid embryos., Morris RL, Pope HW, Sholi AN, Williams LM, Ettinger CR, Beacham GM, Shintaku T, Abbott ZD, Doherty EM., Methods Cell Biol. January 1, 2015; 127 223-41.


Broadening the spectrum of actin-based protrusive activity mediated by Arp2/3 complex-facilitated polymerization: motility of cytoplasmic ridges and tubular projections., Henson JH, Gianakas AD, Henson LH, Lakin CL, Voss MK, Bewersdorf J, Oldenbourg R, Morris RL., Cytoskeleton (Hoboken). August 1, 2014; 71 (8): 484-500.


Hedgehog signaling requires motile cilia in the sea urchin., Warner JF, McCarthy AM, Morris RL, McClay DR., Mol Biol Evol. January 1, 2014; 31 (1): 18-22.


Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian., Dunn EF, Moy VN, Angerer LM, Angerer RC, Morris RL, Peterson KJ., Evol Dev. January 1, 2007; 9 (1): 10-24.


Analysis of cytoskeletal and motility proteins in the sea urchin genome assembly., Morris RL, Hoffman MP, Obar RA, McCafferty SS, Gibbons IR, Leone AD, Cool J, Allgood EL, Musante AM, Judkins KM, Rossetti BJ, Rawson AP, Burgess DR., Dev Biol. December 1, 2006; 300 (1): 219-37.


The genome of the sea urchin Strongylocentrotus purpuratus., null null, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R., Science. November 10, 2006; 314 (5801): 941-52.


Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos., Morris RL, English CN, Lou JE, Dufort FJ, Nordberg J, Terasaki M, Hinkle B., Dev Biol. October 1, 2004; 274 (1): 56-69.


Microinjection methods for analyzing the functions of kinesins in early embryos., Morris RL, Brown HM, Wright BD, Sharp DJ, Sullivan W, Scholey JM., Methods Mol Biol. January 1, 2001; 164 163-72.


A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division., Rogers GC, Chui KK, Lee EW, Wedaman KP, Sharp DJ, Holland G, Morris RL, Scholey JM., J Cell Biol. August 7, 2000; 150 (3): 499-512.                  


Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis., Bi GQ, Morris RL, Liao G, Alderton JM, Scholey JM, Steinhardt RA., J Cell Biol. September 8, 1997; 138 (5): 999-1008.            


Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos., Morris RL, Scholey JM., J Cell Biol. September 8, 1997; 138 (5): 1009-22.              


Are all nucleotidyl transferases metalloenzymes?, Valenzuela P, Morris RW, Faras A, Levinson W, Rutter WJ., Biochem Biophys Res Commun. August 6, 1973; 53 (3): 1036-41.

Page(s): 1