Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Images Attributions Wiki Source
ECB-ANTIBODY-26396277

Attributions for msp130 Ab2

Summary: Papers (24) ???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

creation reported in:


Ontogeny of the basal lamina in the sea urchin embryo., Wessel GM, Marchase RB, McClay DR., Dev Biol. May 1, 1984; 103 (1): 235-45.


referenced by:


microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1., Sampilo NF, Stepicheva NA, Song JL., Dev Biol. April 1, 2021; 472 98-114.


Rab35 regulates skeletogenesis and gastrulation by facilitating actin remodeling and vesicular trafficking., Remsburg C, Testa M, Song JL., Cells Dev. March 1, 2021; 165 203660.


Developmental toxicity of plastic leachates on the sea urchin Paracentrotus lividus., Rendell-Bhatti F, Paganos P, Pouch A, Mitchell C, D'Aniello S, Godley BJ, Pazdro K, Arnone MI, Jimenez-Guri E., Environ Pollut. January 15, 2021; 269 115744.


PI3K inhibition highlights new molecular interactions involved in the skeletogenesis of Paracentrotus lividus embryos., Chiaramonte M, Russo R, Costa C, Bonaventura R, Zito F., Biochim Biophys Acta Mol Cell Res. January 1, 2020; 1867 (1): 118558.


A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo., Martínez-Bartolomé M, Range RC., Development. December 16, 2019; 146 (24):                 


The small GTPase Arf6 regulates sea urchin morphogenesis., Stepicheva NA, Dumas M, Kobi P, Donaldson JG, Song JL., Differentiation. January 1, 2017; 95 31-43.


microRNA-31 modulates skeletal patterning in the sea urchin embryo., Stepicheva NA, Song JL., Development. November 1, 2015; 142 (21): 3769-80.


microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development., Stepicheva N, Nigam PA, Siddam AD, Peng CF, Song JL., Dev Biol. June 1, 2015; 402 (1): 127-41.


Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity., Gambardella C, Ferrando S, Morgana S, Gallus L, Ramoino P, Ravera S, Bramini M, Diaspro A, Faimali M, Falugi C., Aquat Toxicol. January 1, 2015; 158 181-91.


Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm., McIntyre DC, Seay NW, Croce JC, McClay DR., Development. December 1, 2013; 140 (24): 4881-9.


Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis., Lhomond G, McClay DR, Gache C, Croce JC., Development. February 1, 2012; 139 (4): 816-25.


Manganese interferes with calcium, perturbs ERK signaling, and produces embryos with no skeleton., Pinsino A, Roccheri MC, Costa C, Matranga V., Toxicol Sci. September 1, 2011; 123 (1): 217-30.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK, McClay DR., Development. March 1, 2011; 138 (5): 937-45.


Hedgehog signaling patterns mesoderm in the sea urchin., Walton KD, Warner J, Hertzler PH, McClay DR., Dev Biol. July 1, 2009; 331 (1): 26-37.


Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo., Wu SY, Yang YP, McClay DR., Dev Biol. July 15, 2008; 319 (2): 406-15.


Skeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos., Kiyomoto M, Zito F, Costa C, Poma V, Sciarrino S, Matranga V., Dev Growth Differ. December 1, 2007; 49 (9): 731-41.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY, McClay DR., Development. March 1, 2007; 134 (6): 1061-70.


A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo., Peterson RE, McClay DR., Dev Biol. June 1, 2005; 282 (1): 126-37.


LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo., Range RC, Venuti JM, McClay DR., Dev Biol. March 1, 2005; 279 (1): 252-67.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH., Genesis. July 1, 2004; 39 (3): 194-205.


PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos., Bradham CA, Miranda EL, McClay DR., Dev Dyn. April 1, 2004; 229 (4): 713-21.


Characterization of the role of cadherin in regulating cell adhesion during sea urchin development., Miller JR, McClay DR., Dev Biol. December 15, 1997; 192 (2): 323-39.


Dynamics of thin filopodia during sea urchin gastrulation., Miller J, Fraser SE, McClay D., Development. August 1, 1995; 121 (8): 2501-11.

???pagination.result.page??? 1