ECB-ART-53261
Comp Biochem Physiol Part D Genomics Proteomics
2024 Dec 15;52:101328. doi: 10.1016/j.cbd.2024.101328.
Show Gene links
Show Anatomy links
Genome variations in sea cucumbers: Insights from genome survey sequencing and comparative analysis of mitochondrial genomes.
Abstract
Sea cucumbers, marine benthic invertebrates, play crucial roles in maintaining the stability of marine ecosystems and hold key evolutionary positions. However, information regarding their genomes remains limited. Here, we conducted genome survey analyses on seven species from four orders. Results indicated that Colochirus anceps, Colochirus quadrangularis, and Pseudocolochirus violaceus within the order Dendrochirotida have significantly larger genomes (2238-3754 Mbp) compared to conventional sea cucumber genomes, accompanied by a very high proportion of repeat sequences (69.39-72.52 %). While Holothuria edulis and Holothuria atra exhibited similar genome sizes comparable to those of other species within the order Holothuriida, heterozygosity and repeat content varied among all the six species in this order. The representative species Apostichopus californicus of the order Synallactida possesses the smallest genome size (573.45Mbp) within its order, but its heterozygosity (2.24 %) is significantly higher than that of other species. The representative species Synapta maculata of the order Apodida exhibited a normal genome size (900.97 Mbp), lower proportion of repeat sequences (42.19 %), and lower heterozygosity (0.84 %), making it the species with the least challenges for genome sequencing and assembly in the future among all surveyed species. Subsequently, we compiled genomic information from a total of 19 sea cucumber genomes, both newly sequenced and previously reported, revealing a significant linear relationship (P = 0.0001) between genome size and the proportion of repeat sequences in sea cucumbers. Additionally, phylogenetic and comparative analysis of mitochondrial genomes among them indicated extensive rearrangements within the order Apodida, leading to significant discrepancies between mitochondrial and nuclear genome phylogenies.
PubMed ID: 39303392
Article link: Comp Biochem Physiol Part D Genomics Proteomics