Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52648
Nature 2023 Nov 01;6237987:555-561. doi: 10.1038/s41586-023-06669-2.
Show Gene links Show Anatomy links

Molecular evidence of anteroposterior patterning in adult echinoderms.

Formery L , Peluso P , Kohnle I , Malnick J , Thompson JR , Pitel M , Uhlinger KR , Rokhsar DS , Rank DR , Lowe CJ .


Abstract
The origin of the pentaradial body plan of echinoderms from a bilateral ancestor is one of the most enduring zoological puzzles1,2. Because echinoderms are defined by morphological novelty, even the most basic axial comparisons with their bilaterian relatives are problematic. To revisit this classical question, we used conserved anteroposterior axial molecular markers to determine whether the highly derived adult body plan of echinoderms masks underlying patterning similarities with other deuterostomes. We investigated the expression of a suite of conserved transcription factors with well-established roles in the establishment of anteroposterior polarity in deuterostomes3-5 and other bilaterians6-8 using RNA tomography and in situ hybridization in the sea star Patiria miniata. The relative spatial expression of these markers in P. miniata ambulacral ectoderm shows similarity with other deuterostomes, with the midline of each ray representing the most anterior territory and the most lateral parts exhibiting a more posterior identity. Strikingly, there is no ectodermal territory in the sea star that expresses the characteristic bilaterian trunk genetic patterning programme. This finding suggests that from the perspective of ectoderm patterning, echinoderms are mostly head-like animals and provides a developmental rationale for the re-evaluation of the events that led to the evolution of the derived adult body plan of echinoderms.

PubMed ID: 37914929
Article link: Nature



References [+] :
Albuixech-Crespo, Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. 2017, Pubmed