Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49070
Carbohydr Res 2021 Oct 01;508:108400. doi: 10.1016/j.carres.2021.108400.
Show Gene links Show Anatomy links

Optimizing acid hydrolysis for monosaccharide compositional analysis of Nostoc cf. linckia acidic exopolysaccharide.

Uhliariková I , Matulová M , Capek P .


Abstract
The exact estimation of monosaccharide composition is important in the primary structure elucidation of polysaccharides. An acid hydrolysis is usually performed for glycosidic bonds cleavage and releasing of monosaccharides. In this study, optimal conditions of total acid hydrolysis using trifluoroacetic acid (TFA) of acidic lactylated Nostoc cf. linckia exopolysaccharide (EPS) were investigated by NMR spectroscopy. Results of a series of experiments with modified acid concentration, temperature and time of hydrolysis, have shown 2 M TFA, 110 °C, 3 h as the most optimal. The stability of EPS monosaccharide components was also explored. Low stability was found at all tested conditions already during the first hour of hydrolysis; all neutral monosaccharides were degraded from 25% to 40% and glucuronic acid to 75%. NMR, contrary to standard techniques used in monosaccharide compositional analysis (HPLC, HPAEC), allowed simultaneous quantification of all GlcA forms; the free one, that one linked in oligosaccharides, as well as GlcA degradation product γ-lactone. NMR as detection method improves information about uronic acid content in EPS.

PubMed ID: 34280803
Article link: Carbohydr Res