Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48920
Cell Tissue Res 2023 Jan 01;3911:87-109. doi: 10.1007/s00441-021-03526-4.
Show Gene links Show Anatomy links

Regeneration of the digestive system in the crinoid Lamprometra palmata (Mariametridae, Comatulida).

V KN , O KY , Yu DI .


Abstract
The morphology and regeneration of the digestive system and tegmen after autotomy of the visceral mass in the crinoid Lamprometra palmata (Clark 1921) was studied. The gut has a five-lobed shape and is covered by a tegmen. The tegmen consists of epidermis and underlying connective tissue. The digestive tube can be divided into three parts: esophagus, intestine, and rectum. At 6 h post-autotomy, the calyx surface is covered by a layer of amoebocytes and juxtaligamental cells (JLCs). At 14-18 h, post-autotomy transdifferentiation of JLCs begins and give rise to the epidermis and cells of digestive system. On days 1-2 post-autotomy, JLCs undergo the mesenchymal-epithelial transition. Some JLCs turn into typical epidermal cells, while other JLCs form small closed epithelial structures that represent the gut anlage. On day 4 post-autotomy, the animals have a mouth opening and a small anal cone. On day 7 post-autotomy, the visceral mass and the digestive system become fully formed but are smaller than normal. A 24-h exposure of L. palmata individuals to a 10-7 M colchicine solution did not slow down regeneration, and the timing of gut formation was similar to that in the control animals. We conclude that JLCs are the major cell source for gut and epidermis regeneration in L. palmata. The main mechanisms of morphogenesis are cell migration, mesenchymal-epithelial transition, and transdifferentiation.

PubMed ID: 34633568
Article link: Cell Tissue Res