Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48804
J Photochem Photobiol B 2019 Dec 01;201:111684. doi: 10.1016/j.jphotobiol.2019.111684.
Show Gene links Show Anatomy links

Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities.

Fuentes-Tristan S , Parra-Saldivar R , Iqbal HMN , Carrillo-Nieves D .


Abstract
Since the beginning of life on Earth, cyanobacteria have been exposed to natural ultraviolet-A radiation (UV-A, 315-400 nm) and ultraviolet-B radiation (UV-B, 280-315 nm), affecting their cells'' biomolecules. These photoautotrophic organisms have needed to evolve to survive and thus, have developed different mechanisms against ultraviolet radiation. These mechanisms include UVR avoidance, DNA repair, and cell protection by producing photoprotective compounds like Scytonemin, carotenoids, and Mycosporine-like amino acids (MAAs). Lyngbya marine species are commercially important due to their secondary metabolites that show a range of biological activities including antibacterial, insecticidal, anticancer, antifungal, and enzyme inhibitor. The main topic in this review covers the Lyngbya sp., a cyanobacteria genus that presents photoprotection provided by the UV-absorbing/screening compounds such as MAAs and Scytonemin. These compounds have considerable potentialities to be used in the cosmeceutical, pharmaceutical, biotechnological and biomedical sectors and other related manufacturing industries with an additional value of environment friendly in nature. Scytonemin has UV protectant, anti-inflammatory, anti-proliferative, and antioxidant activity. MAAs act as sunscreens, provide additional protection as antioxidants, can be used as UV protectors, activators of cell proliferation, skin-care products, and even as photo-stabilizing additives in paints, plastics, and varnishes. The five MAAs identified so far in Lyngbya sp. are Asterina-330, M-312, Palythine, Porphyra-334, and Shinorine are capable of dissipating absorbed radiation as harmless heat without producing reactive oxygen species.

PubMed ID: 31733505
Article link: J Photochem Photobiol B


Genes referenced: LOC115919910 LOC590297