Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Sci Rep 2019 Apr 25;91:6563. doi: 10.1038/s41598-019-42907-2.
Show Gene links Show Anatomy links

Manganese-induced cellular disturbance in the baker''s yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction.

Hernández RB , Moteshareie H , Burnside D , McKay B , Golshani A .

Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson''s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer''s, Parkinson''s and Huntington''s diseases.

PubMed ID: 31024033
PMC ID: PMC6484083
Article link: Sci Rep
Grant support: [+]

Genes referenced: als2 LOC115919910 LOC583082 LOC588990 pelp1

Article Images: [+] show captions
References [+] :
Al-Jubran, Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus. 2013, Pubmed